RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        A New BISON-like Construction Block Cipher: DBISON

        Haixia Zhao,Yongzhuang Wei,Zhenghong Liu 한국인터넷정보학회 2022 KSII Transactions on Internet and Information Syst Vol.16 No.5

        At EUROCRYPT 2019, a new block cipher algorithm called BISON was proposed by Canteaut et al. which uses a novel structure named as Whitened Swap−Or−Not (WSN). Unlike the traditional wide trail strategy, the differential and linear properties of this algorithm can be easily determined. However, the encryption speed of the BISON algorithm is quite low due to a large number of iterative rounds needed to ensure certain security margins. Commonly, denoting by n is the data block length, this design requires 3n encryption rounds. Moreover, the block size n of BISON is always odd, which is not convenient for operations performed on a byte level. In order to overcome these issues, we propose a new block cipher, named DBISON, which more efficiently employs the ideas of double layers typical to the BISON-like construction. More precisely, DBISON divides the input into two parts of size n/2 bits and performs the round computations in parallel, which leads to an increased encryption speed. In particular, the data block length n of DBISON can be even, which gives certain additional implementation benefits over BISON. Furthermore, the resistance of DBISON against differential and linear attacks is also investigated. It is shown the maximal differential probability (MDP) is 1/2n-1 for n encryption rounds and that the maximal linear probability (MLP) is strictly less than 1/2n-1 when (n/2+3) iterative encryption rounds are used. These estimates are very close to the ideal values when n is close to 256.

      • KCI등재

        SALT-INDUCED CHLOROPLAST PROTEIN (SCP) is Involved in Plant Tolerance to Salt Stress in Arabidopsis

        Yong Zhuang,Yangxuan Liu,Yuxiang Li,Ming Wei,Yuying Tang,Penghui Li,Zhijian Liu,Hui Li,Weizao Huang,Songhu Wang 한국식물학회 2019 Journal of Plant Biology Vol.62 No.6

        Soil salinization threats the agricultural productionand food security worldwide. Salt stress induced plantsenescence and chloroplast degradation. However, it remainslargely unknown how the chloroplast-localized proteins affectplant response to salt stress. Here, we characterized a novelgene (At5g39520) in Arabidopsis, which is induced by saltstress and encodes a chloroplast-localized protein. Thus, thisgene was named SALT-INDUCED CHLOROPLAST PROTEIN(SCP). A T-DNA insertion mutant of SCP gene (scp-1)showed the enhanced tolerance to salt stress, as indicated bythe increased survival rates, fresh weights and chlorophyllcontents compared with wild type plants under salt treatment. Salt-induced leaf senescence was also delayed in scp-1 mutant. The scp-1 complementation line and SCP overexpressionlines displayed the hypersensitivity to salt stress. The qRTPCRanalysis indicated that the transcripts of CHLOROPLASTVESICULATION (CV), which mediates stress-inducedchloroplast degradation, were altered in scp-1 mutant andSCP overexpression lines. Taken together, our results suggestthat SCP gene plays a negative role in response to salt stress andhas potential application for genetic modification of improvingplant tolerance to salt stress.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼