RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Storage-Less and Converter-Less Photovoltaic Energy Harvesting With Maximum Power Point Tracking for Internet of Things

        Yiqun Wang,Yongpan Liu,Cong Wang,Zewei Li,Xiao Sheng,Hyung Gyu Lee,Naehyuck Chang,Huazhong Yang IEEE 2016 IEEE transactions on computer-aided design of inte Vol.35 No.2

        <P>Energy harvesting from natural environment gives range of benefits for the Internet of things. Scavenging energy from photovoltaic (PV) cells is one of the most practical solutions in terms of power density among existing energy harvesting sources. PV power systems mandate the maximum power point tracking (MPPT) to scavenge the maximum possible solar energy. In general, a switching-mode power converter, an MPPT charger, controls the charging current to the energy storage element (a battery or equivalent), and the energy storage element provides power to the load device. The mismatch between the maximum power point (MPP) current and the load current is managed by the energy storage element. However, such architecture causes significant energy loss (typically over 20%) and a significant weight/volume and a high cost due to the cascaded power converters and the energy storage element. This paper pioneers a converter-less PV power system with the MPPT that directly supplies power to the load without the power converters or the energy storage element. The proposed system uses a nonvolatile microprocessor to enable an extremely fine-grain dynamic power management in a few hundred microseconds. This makes it possible to match the load current with the MPP current. We present detailed modeling, simulation, and optimization of the proposed energy harvesting system including the radio frequency transceiver. Experiments show that the proposed setup achieves an 87.1% of overall system efficiency during a day, 30.6% higher than the conventional MPPT methods in actual measurements, and thus a significantly higher duty cycle under a weak solar irradiance.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼