RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        An Injectable, In Situ Forming and NIR-Responsive Hydrogel Persistently Reshaping Tumor Microenvironment for Efficient Melanoma Therapy

        Han Zhang,Liangshan Hu,Wei Xiao,Yanqiong Su,Donglin Cao 한국생체재료학회 2023 생체재료학회지 Vol.27 No.00

        Background Melanoma is a highly aggressive form of skin cancer with increasing incidence and mortality rates. Chemotherapy, the primary treatment for melanoma, is limited by hypoxia-induced drug resistance and suppressed immune response at the tumor site. Modulating the tumor microenvironment (TME) to alleviate hypoxia and enhance immune response has shown promise in improving chemotherapy outcomes. Methods In this study, a novel injectable and in situ forming hydrogel named MD@SA was developed using manganese dioxide (MnO2) nanosheets pre-loaded with the chemotherapy drug doxorubicin (DOX) and mixed with sodium alginate (SA). The sustainable drug delivery, oxygen generation ability, and photothermal property of MD@SA hydrogel were characterized. The therapeutic efficacy of hydrogel was studied in B16F10 in vitro and B16F10 tumorbearing mice in vivo. The immune effects on macrophages were analyzed by flow cytometry, real-time quantitative reverse transcription PCR, and immunofluorescence analyses. Results The MD@SA hydrogel catalyzed the tumoral hydrogen peroxide (H2O2) into oxygen, reducing the hypoxic TME, down-regulating hypoxia-inducible factor-1 alpha (HIF-1α) and drug efflux pump P-glycoprotein (P-gp). The improved TME conditions enhanced the uptake of DOX by melanoma cells, enhancing its efficacy and facilitating the release of tumor antigens. Upon NIR irradiation, the photothermal effect of the hydrogel induced tumor apoptosis to expose more tumor antigens, thus re-educating the M2 type macrophage into the M1 phenotype. Consequently, the MD@SA hydrogel proposes an ability to constantly reverse the hypoxic and immune-inhibited TME, which eventually restrains cancer proliferation. Conclusion The injectable and in situ forming MD@SA hydrogel represents a promising strategy for reshaping the TME in melanoma treatment. By elevating oxygen levels and activating the immune response, this hydrogel offers a synergistic approach for TME regulation nanomedicine.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼