RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Computation and optimization of rack and pinion steering mechanism considering kingpin parameters and tire side slip angle

        Xinqian Zhang,Farong Kou,Guohong Wang,Jianan Xu 대한기계학회 2023 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.37 No.1

        In this paper, the parameter optimization and error analysis of the rack and pinion steering mechanism are carried out on the basis of considering the influence of kingpin parameters. The steering characteristic equation describing the motion of the steering mechanism is calculated by analyzing the spatial geometrical relationship between the wheel and kingpin and unifying the projection relation between the kingpin and the equivalent steering trapezoid. The ideal Ackermann equation is modified by the Ackermann rate and the kingpin parameters. The modified Ackermann equation is used as the objective function. The segmented fitness function and the evaluation function with weighted factors are designed. A genetic algorithm containing the three functions is used to optimize the parameters of the steering characteristic equation. The error analysis of the numerical example shows that the accuracy of steering trapezoid structure parameters, steering characteristic equation, and Ackermann equation is improved compared with that before optimization.

      • KCI등재

        Modeling theory and rapid parameterized implementation of a circular arc wire rope with a special-shaped cross section

        Wu Zhang,Changlei Lv,Weixiong Liu,Xinqian Zhang,Feiyan Han 대한기계학회 2022 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.36 No.4

        This study describes a method for establishing the model of a circular arc wire rope with special-shaped cross sections, such as oval or triangular, derives the mathematical model for these wire ropes and establishes a three-dimensional (3D) model of one-twelfth circle for them. The wire rope modeling system has been enhanced. The traditional method for drawing the 3D model of the wire rope is to input the wire central line equation into the drawing software (for example, Pro/E) and then sweep, which is tedious and time-consuming. To address this issue, this study develops a software that enables the rapid establishment of a 3D model of steel wire rope by inputting key steel wire rope parameters. Moreover, this software streamlines the wire rope modeling process, increases the wire rope’s design efficiency, and introduces a new method for wire rope modeling.

      • KCI등재후보

        Study of Mechanism of Counter-rotating Turbine Increasing Two-Stage Turbine System Efficiency

        Yanbin Liu,Yangjun Zhang,Weilin Zhuge,Xinqian Zheng,Shuyong Zhang,Junyue Zhang 한국유체기계학회 2013 International journal of fluid machinery and syste Vol.6 No.3

        Two-stage turbocharging is an important way to raise engine power density, to realize energy saving and emission reducing. At present, turbine matching of two- stage turbocharger is based on MAP of turbine. The matching method does not take the effect of turbines' interaction into consideration, assuming that flow at high pressure turbine outlet and low pressure turbine inlet is uniform. Actually, there is swirl flow at outlet of high pressure turbine, and the swirl flow will influence performance of low pressure turbine which influencing performance of engine further. Three-dimension models of turbines with two-stage turbocharger were built in this paper. Based on the turbine models, mechanism of swirl flow at high pressure turbine outlet influencing low pressure turbine performance was studied and a two-stage radial counter-rotation turbine system was raised. Mechanisms of the influence of counter-rotation turbine system acting on low-pressure turbine were studied using simulation method. The research result proved that in condition of small turbine flow rate corresponding to engine low-speed working condition, counter-rotation turbine system can effectively decrease the influence of swirl flow at high pressure turbine outlet imposing on low pressure turbine and increases efficiency of the low-pressure turbine, furthermore increases the low-speed performance of the engine.

      • SCOPUSKCI등재

        Study of Mechanism of Counter-rotating Turbine Increasing Two-Stage Turbine System Efficiency

        Liu, Yanbin,Zhuge, Weilin,Zheng, Xinqian,Zhang, Yangjun,Zhang, Shuyong,Zhang, Junyue Korean Society for Fluid machinery 2013 International journal of fluid machinery and syste Vol.6 No.3

        Two-stage turbocharging is an important way to raise engine power density, to realize energy saving and emission reducing. At present, turbine matching of two-stage turbocharger is based on MAP of turbine. The matching method does not take the effect of turbines' interaction into consideration, assuming that flow at high pressure turbine outlet and low pressure turbine inlet is uniform. Actually, there is swirl flow at outlet of high pressure turbine, and the swirl flow will influence performance of low pressure turbine which influencing performance of engine further. Three-dimension models of turbines with two-stage turbocharger were built in this paper. Based on the turbine models, mechanism of swirl flow at high pressure turbine outlet influencing low pressure turbine performance was studied and a two-stage radial counter-rotation turbine system was raised. Mechanisms of the influence of counter-rotation turbine system acting on low-pressure turbine were studied using simulation method. The research result proved that in condition of small turbine flow rate corresponding to engine low-speed working condition, counter-rotation turbine system can effectively decrease the influence of swirl flow at high pressure turbine outlet imposing on low pressure turbine and increases efficiency of the low-pressure turbine, furthermore increases the low-speed performance of the engine.

      • KCI등재

        Adaptive flow optimization of a turbocharger compressor to improve engine low speed performance

        Yangjun Zhang,Chenfang Wang,Zheng Xinqian,Weilin Zhuge,Yulin Wu,Jianzhong Xu 대한기계학회 2013 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.27 No.6

        To improve the engine overall performance, an adaptive flow optimization procedure is proposed in this paper to synthesize turbocharger compressor optimum designs. Two objective functions are involved in the adaptive optimization. They are the traditional compressor design and the compressor design with consideration of improving engine overall performance. The two-step decomposition approach is chosen to generate optimum designs. The optimized designs not only satisfy turbomachinery and engine constraints but also have optimum objective function values in the two fields. Performance sensitivity analysis of compressor main design variables is performed for the flow optimization design process. A centrifugal compressor is redesigned for a turbocharged gasoline engine, as an example, based on the adaptive flow optimization process. The calculating results show a more than 5% increase of isentropic efficiency in comparison with the base line compressor, resulting in a more than 19% increase of engine torque at low speed conditions.

      • KCI등재

        Modeling and testing for continuously adjustable damping shock absorber equipped with proportional solenoid valve

        Jianan Xu,Farong Kou,Xinqian Zhang,Guohong Wang 대한기계학회 2023 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.37 No.8

        A vehicle's solenoid valve-actuated shock (SVSA) absorber is of wide interest because of its adjustable damping characteristics. The proportional solenoid valve is a pivotal component for commanding damping force, but the research on its model principle still needs to be improved. Therefore, this research aimed to establish an accurate model of the proportional solenoid valve composed of the pilot valve and relief valve. In the pilot valve, we proposed a valve spool structure using a two-stage combined throttling groove to control flow accurately. Then, the dynamic equation of the spool was established, and it is also considered that the magnetic saturation of soft magnetic materials impacts electromagnetic force. The flow force in the dynamic equation was numerically solved by the CFD method. The flow rate in the relief valve was analyzed from the deformation of the lamination valves and main valve plate through the small deflections thin plate theory. Then, the SVSA bench test was carried out. The results show good agreement between the test and calculation, and the maximum error is within 9 %. It is indicated that the model of the SVSA equipped with the proportional solenoid valve has high accuracy.

      • KCI등재

        An investigation on the performance of a Brayton cycle waste heat recovery system for turbocharged diesel engines

        Binyang Song,Weilin Zhuge,Rongchao Zhao,Xinqian Zheng,Yangjun Zhang,Yong Yin,Yanting Zhao 대한기계학회 2013 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.27 No.6

        A Brayton cycle waste heat recovery (WHR) system for turbocharged diesel engines was proposed and the performance of a diesel engine integrated with the proposed system was investigated. The waste heat recovery system is integrated with the turbocharging system of diesel engines, using the turbocharger compressor as the Brayton cycle compressor. The engine cycle simulation code GT-Suite 7.0was used to investigate the performance of a diesel engine integrated with the WHR system. A Brayton cycle turbine was designed and its performance was simulated with a through-flow model. The turbocharging system of the original engine was modified and the energy flow distribution between the diesel cycle and the Brayton cycle was optimized. Results show that the fuel economy of the diesel engine can be improved by 2.6% at high engine speed and 4.6% at low engine speed under engine full load operating conditions when equipped with the Brayton cycle WHR system. The influence of turbocharger parameters on the WHR engine performance was invesgated.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼