RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Effect of teeth bending and mushrooming damages on leakage performance of a labyrinth seal

        Xin Yan,Xinbo Dai,Kang Zhang,Jun Li,Kun He 대한기계학회 2018 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.32 No.10

        To achieve higher aerodynamic performance, turbine usually works at tight clearance, which results in inevitable rub between the rotor and stator parts of labyrinth seal due to vibrations, misalignment, mechanical force, thermal stress, etc. In the rubbing events, contact between labyrinth fin and rotor part will commonly induce the teeth bending and mushrooming damages, which significantly affect the discharge performance of a labyrinth seal. To account for the influence of teeth bending and mushrooming on leakage performance of a straight-through labyrinth seal, the leakage rates and flow fields in the worn labyrinth seal are measured and also compared with the original design cases. With numerical methods, the discharge behaviors of the labyrinth seal with different degrees of bending and mushroom damages are analyzed. It shows that the predicted leakage performance and flow fields in the labyrinth seals match well with the experimental tests. For the bending cases, the leakage rates and flow patterns in labyrinth seals are dependent on the effective clearance and bending angle. The leakage ratio of forward bending case is smaller than that of backward bending case with the same geometrical dimensions. However, for the mushroomed labyrinth seals, the leakage rates and flow patterns are much dependent on the effective clearance but slightly dependent on the mushroom radius.

      • KCI등재

        The thermal and dielectric properties of diamond/SiC composites prepared by polymer impregnation and pyrolysis

        Liu Pengfei,He Xinbo,Qu Xuanhui 한국탄소학회 2023 Carbon Letters Vol.33 No.2

        This article reported a simple method for preparing diamond/SiC composites by polymer impregnation and pyrolysis (PIP) process, and the advantages of this method were discussed. Only diamond and SiC were contained in the diamond/SiC composite prepared by PIP process, and the diamond particles remained thermally stable up until the pyrolysis temperature was increased to 1600 °C. The pyrolysis temperature has a significant impact on the thermal conductivity and dielectric properties of composites. The thermal conductivity of the composite reaches a maximum value of 63.9 W/mK when the pyrolysis temperature is 1600 °C, and the minimum values of the real and imaginary part of the complex permittivity are 19.5 and 0.77, respectively. The PIP process is a quick and easy method to prepare diamond/SiC composites without needing expensive equipment, and it is of importance for promoting its application in the field of electric packaging substrate.

      • KCI등재

        Controllable Synthesis of Silver Nanoparticles Using Piezoelectric-Actuated High-Frequency Vibration Self-Circulating Microfluidic Reactor

        Guojun Liu,Fang He,Yan Li,Xinbo Li,Hong Zhao,Conghui Wang,Conghong Zhan,Chunxiu Tang 성균관대학교(자연과학캠퍼스) 성균나노과학기술원 2019 NANO Vol.14 No.8

        Based on the liquid-phase reduction mechanism, a controllable synthesis method, which uses piezoelectric-actuated high-frequency vibration self-circulating microfluidic reactor, to prepare silver nanoparticles is proposed. Firstly, the synthesis mechanism of silver nanoparticles and the working principle of the microfluidic reactor were analyzed. Then, in order to study and explore the influence of self-circulating and high frequency vibration on the synthesis of silver nanoparticles, a series of related synthesis experiments were carried out. The synthesized silver nanoparticles were characterized by UV-Visible spectroscopy and transmission electron microscopy. The effects of micropump driving voltage and high-frequency vibration on the synthesis of silver nanoparticles were analyzed. The experiment results show that when the silver nanoparticles were synthesized using piezoelectric-actuated high-frequency vibration self-circulating microfluidic reactor, the higher the driving voltage of the circulating reflux micropump, the faster the vortex rotation speed in the mixing pool and the more uniform the reagent reaction. Besides, high-frequency vibration can suppress the aggregation of silver nanoparticles, and balance the growth environment of particles, which is beneficial to the formation of silver nanoparticles with good monodispersity, high sphericity and small size deviation.

      • SCIESCOPUSKCI등재

        Thermal and mechanical properties of diamond/SiC substrate reinforced by bimodal diamond particles

        Pengfei Liu,Xulei Wang,Xinbo He,Xuanhui Qu 한국탄소학회 2022 Carbon Letters Vol.32 No.3

        Diamond reinforced silicon carbide matrix composites (diamond/SiC) with high thermal conductivity were prepared by tape casting combined with Si vapor infiltration for thermal management application. The effects of the mixing mode of bimodal diamond particles on the microstructure, thermal and mechanical properties of the composites were analyzed. The results reveal that the thermal conductivity of composites is affected significantly by mixing mode of diamond. In general, when the content of large diamond remains constant, adding a slight amount of small diamond was found to be effective in improving the thermal conductivity of the composite. However, excess small diamonds added will decrease thermal conductivity due to its high interfacial thermal resistance. The maximum thermal conductivity of obtained diamond/SiC is 469 W/(m K) when 38 vol% large diamond and 4 vol% small diamond were added. Such a result can be attributed to the formation of efficient heat transfer channels within the composite and sound interfacial bonding between diamond and SiC phase. Diamond/SiC with high thermal conductivity are expected to be the next generation of electronic packaging substrate.

      • KCI등재

        UKF Estimation Method of Centroid Slip Angle for Vehicle Stability Control

        Pan Wang,Xiaobin Fan,Xinbo Chen,Juean Yi,Shuwen He 제어·로봇·시스템학회 2023 International Journal of Control, Automation, and Vol.21 No.7

        Vehicle center of sideslip angle is an essential parameter in vehicle stability control system. In view of the current problems is taken as the research object including low estimation accuracy and poor real-time performance of the current centroid sideslip angle, the four-wheel motor driven electric vehicle. The estimation problem of the sideslip angle is studied in-depth when the vehicle is in a nonlinear state. In addition, an Unscented Kalman Filter (UKF) estimation method is proposed to reduce observation error and improve the practicability of the estimation system. First of all, the research starts with building a 7-degree-of-freedom vehicle model which is based on the Dugoff tire model. Then, after measuring the state parameters, the UKF algorithm is used to estimate the sideslip angle. By comparing with the Extended Kalman Filter (EKF) algorithm, it is confirmed that the estimation method can not only better estimate the center of sideslip angle in real time, but also greater improve the handling stability of the vehicle in the driving state. Besides, the effectiveness of the algorithm is further verified by the real vehicle road test.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼