RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Phenol Removal Performance and Mechanism Using Catalytic Ozonation with the Catalyst of Cobalt-doped α-MnO2

        Jie Zhang,Ben Dong,Ying Han,Xiaocui Zhan,Sijie Ge,Shilong He 대한환경공학회 2023 Environmental Engineering Research Vol.28 No.3

        In this paper, Cobalt-doped α-MnO2 (i.e., Co-α-MnO2) were synthesized through hydrothermal method. Phenol was employed as targeted pollutants to investigate the catalytic ozonation performance of Co-α-MnO2. Results showed that Co-α-MnO2 significantly improved the phenol removal increased to 97.47 % after 40 min, which was 16.46 %, 38.92 % higher than that of α-MnO2 catalytic ozonation and single ozonation without catalyst. Additionally, the physicochemical properties of α-MnO2 and Co-α-MnO2 were analyzed using technologies such as XRD, TEM, BET and XPS. Compared to α-MnO2, Co-α-MnO2 has larger specific surface area (79.496 m2/g) and pore volume (0.0396 cm3/g), higher Mn3+ relative content (41.16 %) and adsorbed oxygen content (18.99 %). Also, the oxygen vacancy content, lattice defect content and surface hydroxyl content of Co-α-MnO2 are higher than that of α-MnO2, which could result in higher catalytic oxidation performance of Co-α-MnO2. The influence of masking agent showed that surface hydroxyl group, •OH and •O2− were involved in the catalytic ozonation of phenol. This study could help recognize the role of surface hydroxyl groups and active free radicals and demonstrate the contribution of reactive oxygen species on phenol removal in Co-α-MnO2 systems.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼