RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Hedonic Coalition Formation for Distributed Task Allocation in Heterogeneous Multi-agent System

        Lexing Wang,Tenghai Qiu,Zhiqiang Pu,Jianqiang Yi,Jinying Zhu,Wanmai Yuan 제어·로봇·시스템학회 2024 International Journal of Control, Automation, and Vol.22 No.4

        Due to the complexity of tasks in the real world, multiple agents with different capabilities tend to cooperate to handle diverse requirements of these tasks by forming coalitions. To solve the problem of finding optimal heterogeneous coalition compositions, this paper proposes a novel distributed hedonic coalition formation game method to solve the task allocation problem for multiple heterogeneous agents. Firstly, to quantify the intention of an agent joining each coalition, a utility function for each agent is designed based on the cost and the reward with regard to the given tasks, where the heterogeneous requirements of tasks are also considered. Then, a preference relation related to the utility function is designed for the self-interested agents autonomously choose to join or leave a coalition. Subsequently, a theorem is presented, and analyses have been conducted to show that the proposed method achieves a Nash-stable solution in the heterogeneous system. Further, to develop a Nash stable partition result, a distributed hedonic coalition formation algorithm containing prioritization and consensus stages is designed for each agent to make decisions. The algorithm is implemented based on local interactions with neighbor agents under a connected communication network. Finally, simulations are conducted to verify the performance of the proposed method. Results show that the proposed method has the feasibility in solving heterogeneous composition and the broader scalability in different scenarios.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼