RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • The Wnt Receptor Ryk Reduces Neuronal and Cell Survival Capacity by Repressing FOXO Activity During the Early Phases of Mutant Huntingtin Pathogenicity

        Tourette, Cendrine,Farina, Francesca,Vazquez-Manrique, Rafael P.,Orfila, Anne-Marie,Voisin, Jessica,Hernandez, Sonia,Offner, Nicolas,Parker, J. Alex,Menet, Sophie,Kim, Jinho,Lyu, Jungmok,Choi, Si Ho,C Public Library of Science 2014 PLoS biology Vol.12 No.6

        <▼1><P>A study of Huntington's disease reveals that neurons might fail to cope with maintaining their function during the pre-symptomatic, pathogenic phases of HD, possibly due to the early repression of key longevity-promoting transcription factors by abnormal developmental signaling.</P></▼1><▼2><P>The Wnt receptor Ryk is an evolutionary-conserved protein important during neuronal differentiation through several mechanisms, including γ-secretase cleavage and nuclear translocation of its intracellular domain (Ryk-ICD). Although the Wnt pathway may be neuroprotective, the role of Ryk in neurodegenerative disease remains unknown. We found that Ryk is up-regulated in neurons expressing mutant huntingtin (HTT) in several models of Huntington's disease (HD). Further investigation in <I>Caenorhabditis elegans</I> and mouse striatal cell models of HD provided a model in which the early-stage increase of Ryk promotes neuronal dysfunction by repressing the neuroprotective activity of the longevity-promoting factor FOXO through a noncanonical mechanism that implicates the Ryk-ICD fragment and its binding to the FOXO co-factor β-catenin. The Ryk-ICD fragment suppressed neuroprotection by <I>lin-18</I>/Ryk loss-of-function in expanded-polyQ nematodes, repressed FOXO transcriptional activity, and abolished β-catenin protection of mutant htt striatal cells against cell death vulnerability. Additionally, Ryk-ICD was increased in the nucleus of mutant htt cells, and reducing γ-secretase PS1 levels compensated for the cytotoxicity of full-length Ryk in these cells. These findings reveal that the Ryk-ICD pathway may impair FOXO protective activity in mutant polyglutamine neurons, suggesting that neurons are unable to efficiently maintain function and resist disease from the earliest phases of the pathogenic process in HD.</P></▼2><▼3><P><B>Author Summary</B></P><P>Neuronal cell decline in neurodegenerative disease can be caused by inherited mutations and involves neuronal dysfunction followed by neuronal death. The ability of neurons to cope with the chronic stress induced by mutant protein expression may determine the course of their decline and eventual demise. Although the pathophysiological importance of these stress responses has been previously shown, very little is known about the signaling networks that regulate neuronal homeostasis during the early presymptomatic—but pathogenic—phases of a neurodegenerative disorder such as Huntington's disease (HD). In particular, it remains unclear whether neuronal differentiation factors regulate stress response pathways during neurodegenerative disease and how this might impact the overall capacity of neurons to cope with stress and maintain their function. Here, we show that the Wnt receptor Ryk, a protein known to be important for neurogenesis, is increased in different animal models of HD, before or during the early phases of the disease process. Interestingly, increased levels of Ryk repress activity of the FOXO proteins—a family of transcription factors that play a role in cell survival/longevity and in neuronal homeostasis and protection. Ryk represses FOXO protective activity, possibly directly, through its intracellular domain, a product of γ-secretase–mediated cleavage previously implicated in the birth of new cortical neurons. This highlights the regulation of HD neuron survival by a Ryk-dependent pathway that is distinct from canonical Wnt/Ryk signaling. From our findings, we postulate that neurons are unable to develop an efficient FOXO-mediated survival response during the very early, pathogenic phases of HD.</P></▼3>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼