RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Production and investigation of 3D printer ABS filaments filled with some rare-earth elements for gamma-ray shielding

        Gultekin Batuhan,Bulut Fatih,Yildiz Hatice,Us Hakan,Ogul Hasan 한국원자력학회 2023 Nuclear Engineering and Technology Vol.55 No.12

        Radiation is the main safety issue for almost all nuclear applications, which must be controlled to protect living organisms and the surrounding materials. In this context, radiation shielding materials have been investigated and used in nuclear technologies. The choice of materials depends on the radiation usage area, type, and energy. Polymer materials are preferred in radiation shielding applications due to their superior characteristics such as chemical inertness, resistivity, low weight, flexibility, strength, and low cost. In the presented work, ABS polymer material, which is possibly the most commonly used material in 3D printers, is mixed with Gd2O3 and Er2O3 nanoparticles. ABS filaments containing these rare-earth elements are then produced using a filament extruder. These produced filaments are used in a 3D printer to create shielding samples. Following the production of shielding samples, SEM, EDS, and gamma-ray shielding analyses (including experiments, WinXCOM, GEANT4, and FLUKA) are performed. The results show that 3D printing technology offers significant enhancements in creating homogeneous and well-structured materials that can be effectively used in gamma-ray shielding applications.

      • KCI등재

        A comparative study of 3D printing and sol-gel polymer production techniques: A case study on usage of ABS polymer for radiation shielding

        Ogul Hasan,Gultekin Batuhan,Bulut Fatih,Us Hakan 한국원자력학회 2024 Nuclear Engineering and Technology Vol.56 No.6

        This study focuses on the comparative analysis of ABS polymer samples produced using two distinct manufacturing techniques: 3D printing and the sol-gel methods. In the first approach, ABS polymer was augmented with rare earth oxides, Er2O3 and Gd2O3, in nano powder form and fabricated into test specimens using 3D printing technology. In the second approach, identical samples were prepared via the sol-gel technique involving mold-based fabrication. Elemental content analysis revealed no significant differences between the samples produced by the two methods. The study proceeds to evaluate the gamma-ray shielding, neutron shielding, temperature resistance, and SEM/EDS pictures of ABS samples generated through both techniques. 3D printing method exhibited more favorable results in terms of structure morphology and thermal stability while there is no significant difference for radiation shielding. The results provide insights into the performance and suitability of each production method for radiation shielding applications. This research not only contributes to enhancing radiation shielding technology but also informs the selection of the most appropriate fabrication method for specific applications in nuclear technologies and diagnostic energy range in medical purposes.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼