RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • The CCR4-NOT Complex Is Implicated in the Viability of Aneuploid Yeasts

        Tange, Yoshie,Kurabayashi, Atsushi,Goto, Bunshiro,Hoe, Kwang-Lae,Kim, Dong-Uk,Park, Han-Oh,Hayles, Jacqueline,Chikashige, Yuji,Tsutumi, Chihiro,Hiraoka, Yasushi,Yamao, Fumiaki,Nurse, Paul,Niwa, Osami Public Library of Science 2012 PLoS genetics Vol.8 No.6

        <P>To identify the genes required to sustain aneuploid viability, we screened a deletion library of non-essential genes in the fission yeast <I>Schizosaccharomyces pombe</I>, in which most types of aneuploidy are eventually lethal to the cell. Aneuploids remain viable for a period of time and can form colonies by reducing the extent of the aneuploidy. We hypothesized that a reduction in colony formation efficiency could be used to screen for gene deletions that compromise aneuploid viability. Deletion mutants were used to measure the effects on the viability of spores derived from triploid meiosis and from a chromosome instability mutant. We found that the CCR4-NOT complex, an evolutionarily conserved general regulator of mRNA turnover, and other related factors, including poly(A)-specific nuclease for mRNA decay, are involved in aneuploid viability. Defective mutations in CCR4-NOT complex components in the distantly related yeast <I>Saccharomyces cerevisiae</I> also affected the viability of spores produced from triploid cells, suggesting that this complex has a conserved role in aneuploids. In addition, our findings suggest that the genes required for homologous recombination repair are important for aneuploid viability.</P><P><B>Author Summary</B></P> <P>Aneuploidy is a major cause of abortive development and is implicated in tumorigenesis in humans. Recent studies revealed that the increased need for protein degradation might account for the detrimental effects of aneuploidy on a cell. Here, we investigated the genetic systems responsible for aneuploid viability. Using a collection of gene deletions in fission yeast, we isolated mutants that affect aneuploid viability. We found that an evolutionarily conserved transcription regulator, the CCR4-NOT complex, and its related factors are required for aneuploid viability, suggesting that regulation of mRNA turnover is required to tolerate aneuploidy. In addition, homologous recombination repair is important for aneuploid viability.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼