RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        Are there arterio-venous differences of blood micro-rheological variables in laboratory rats?

        Timea Hever,Ferenc Kiss,Erika Sajtos,Lili Matyas,Norbert Nemeth 한국유변학회 2010 Korea-Australia rheology journal Vol.22 No.1

        In animal experiments blood samples are often taken from various parts of the circulation. Although several variables including blood gas parameters are known to alter comparing arterial to venous system, arterio-venous (A-V) differences of blood micro-rheological variables (erythrocyte deformability and aggregation) tested by ektacytometry and aggregometry are not completely known in laboratory rats. In 12 outbred rats we investigated red blood cell deformability (RheoScan-D200 slit-flow ektacytometer), red blood cell aggregation (Myrenne MA-1 erythrocyte aggregometer), hematological variables (Sysmex F-800 microcell counter), blood pH and blood gases (ABL555 Radiometer Copenhagen) in blood samples taken parallel from the abdominal aorta and from the caudal caval vein. Blood pH did not differ, blood gas partial tensions showed physiological A-V differences, as it was expected. White blood cell count, red blood cell count and hematocrit were significantly higher in samples from the caval vein. Erythrocyte aggregation values (at 3 1/s shear rate) were significantly higher in samples taken from the abdominal aorta. Erythrocyte deformability (elongation index) did not show obvious A-V differences. Arterio-venous hemorheological differences -mostly of erythrocyte aggregation- can be found in rats, thus, the standardization of the studies and planning appropriate control measurements are necessary for safe evaluation of the obtained results.

      • KCI등재후보

        The power of slit-flow ektacytometry measurements for testing normal and heat treated red blood cells using various viscosity media in laboratory animals

        Ferenc Kiss,Erika Sajtos,Timea Hever,Norbert Nemeth 한국유변학회 2010 Korea-Australia rheology journal Vol.22 No.1

        Red blood cell (RBC) deformability values resulted from ektacytometry tests can be influenced by the viscosity of the medium in which the RBCs are suspended for measurement. To determine the power of measurements using various viscosity media in this study we used normal and heat treated RBCs from laboratory rats and beagle dogs. A RheoScan-D200 slit-flow ektacytometer was used to measure RBC deformability. Blood samples were taken from female Sprague-Dawley rats and inbred beagle dogs. Before and after heat treatment of RBC suspensions ektacytometry tests were performed using PVP solutions at viscosity of 15, 20and 30 mPa.s. Heat treatment caused impaired RBC deformability in both species and in every PVP solution. The difference between normal and heat treated RBCs was the highest in rats, while in dogs the magnitude of change was smaller, however being significant. Well comparable and stable results were found using 30 mPa.s media. The sensitivity of RBCs for heat treatment seems to be higher in rats. The suspending PVP medium at 30 mPa.s is recommended for testing RBC deformability by ektacytometry in laboratory rats and dogs, too, because this media resulted in the most stable data when comparing normal and rigid cells.

      • KCI등재후보

        Storage of laboratory animal blood samples causes hemorheological alterations : Inter-species differences and the effects of duration and temperature

        Norbert Nemeth,Oguz K. Baskurt,Herbert J. Meiselman,Ferenc Kiss,Mehmet Uyuklu,Timea Hever,Erika Sajtos,Peter Kenyeres,Kalman Toth,Istvan Furka,Iren Miko 한국유변학회 2009 Korea-Australia rheology journal Vol.21 No.2

        Hemorheological results may be influenced by the time between blood sampling and measurement, and storage conditions (e.g., temperature, time) during sample delivery between laboratories may further affect the resulting data. This study examined possible hemorheological alterations subsequent to storage of rat and dog blood at room temperature (22℃) or with cooling (4~10℃) for 2, 4, 6, 24, 48 and 72 hours. Measured hemorheological parameters included hematological indices, RBC aggregation and RBC deformability. Our results indicate that marked changes of RBC deformability and of RBC aggregation in whole blood can occur during storage, especially for samples stored at room temperature. The patterns of deformability and aggregation changes at room temperature are complex and species specific, whereas those for storage at the lower temperature range are much less complicated. For room temperature storage, it thus seems logical to suggest measuring rat and dog cell deformability within 6 hours; aggregation should be measured immediately for rat blood or within 6 hours for dog blood. Storage at lower temperatures allows measuring EI up to 72 hours after sampling, while aggregation must be measured immediately, or if willing to accept a constant decrease, over 24~72 hours.

      • SCIESCOPUSKCI등재

        Storage of laboratory animal blood samples causes hemorheological alterations : Inter-species differences and the effects of duration and temperature

        Nemeth, Norbert,Baskurt, Oguz K.,Meiselman, Herbert J.,Kiss, Ferenc,Uyuklu, Mehmet,Hever, Timea,Sajtos, Erika,Kenyeres, Peter,Toth, Kalman,Furka, Istvan,Miko, Iren The Korean Society of Rheology 2009 Korea-Australia rheology journal Vol.21 No.2

        Hemorheological results may be influenced by the time between blood sampling and measurement, and storage conditions (e.g., temperature, time) during sample delivery between laboratories may further affect the resulting data. This study examined possible hemorheological alterations subsequent to storage of rat and dog blood at room temperature ($22^{\circ}C$) or with cooling ($4{\sim}10^{\circ}C$) for 2, 4, 6, 24, 48 and 72 hours. Measured hemorheological parameters included hematological indices, RBC aggregation and RBC deformability. Our results indicate that marked changes of RBC deformability and of RBC aggregation in whole blood can occur during storage, especially for samples stored at room temperature. The patterns of deformability and aggregation changes at room temperature are complex and species specific, whereas those for storage at the lower temperature range are much less complicated. For room temperature storage, it thus seems logical to suggest measuring rat and dog cell deformability within 6 hours; aggregation should be measured immediately for rat blood or within 6 hours for dog blood. Storage at lower temperatures allows measuring EI up to 72 hours after sampling, while aggregation must be measured immediately, or if willing to accept a constant decrease, over 24~72 hours.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼