http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
Flame Spread Mechanism of a Blended Fuel Droplet Array at Supercritical Pressure
Iwahashi, Takeshi,Kobayashi, Hideaki,Niioka, Takashi The Korean Society of Combustion 2002 한국연소학회지 Vol.7 No.1
Flame spread experiments of a fuel droplet array were performed using a microgravity environment. N-decane, 1-octadecene, and the blends (50% : 50% vol.) of these fuels were used and the experiments were conducted at pressures up to 5.0 MPa, which are over the critical pressure of these fuels. Observations of the flame spread phenomenon were conducted for OH radical emission images recorded using a high-speed video camera. The flame spread rates were calculated based on the time history of the spreading forehead of the OH emission images. The flame spread rate of the n-decane droplet-array decreased with pressure and had its minimum at a pressure around half of the critical pressure and then increased again with pressure. It had its maximum at a pressure over the critical pressure and then decreased gradually. The pressure dependence of flame spread rate of 1-octadecene were similar to those of n-decan, but the magnitude of the spread rate was much smaller than that of n-decane. The variation of the flame spread for the blended fuel was similar to that of n-decane in the pressure range from atmospheric pressure to near the critical pressure of the blended fuel. When the pressure increased further, it approached to that of 1-octadecene. Numerically estimated gas-liquid equilibrium states proved that almost all the fuel gas which evaporated from the droplet at ordinary pressure consisted of n-decane whereas near and over the critical pressure, the composition of the fuel gas was almost the same as that of the liquid phase, so that the effects of 1-octadecene on the flame spread rate was significant.
강제 대류하에서 일차원 액적 배열내의 화염 퍼짐에 관한 실험적 연구
박정,이기만,신강숭,Park, Jeong,Lee, Kiman,Niioka, Takashi 대한기계학회 2000 大韓機械學會論文集B Vol.24 No.1
Experimental investigation on flame spread along suspended droplet arrays have been conducted with various droplet spacings and ambient air velocities. Especially, an opposed air stream is introduced to simulate fundamental flame spread behaviors in spray combustion. High-speed chemiluminescence imaging technique of OH radicals has been adopted to measure flame spread rates and to observe various flame spread behaviors. The fuel used is n-Decane and the air velocity varies from 0 to 17cm/s. The pattern of flame spread is grouped into two: a continuous mode and an intermittent one. It is found that there exists droplet spcings, above which flame spread does not occur. The increase of ambient air velocity causes the limit droplet spacing of flame spread to become small due to the increase of apparent flame stretch. As the ambient air velocity decreases, flame spread rate increases and then decreases after taking a maximum flame spread rate. This suggests that there exists a moderate air flowing to give a maximum flame spread rate due to enhanced chemical reaction by the increase of oxidizer concentration.
통상 및 미소 중력의 초임계 압력하에서 일차원 액적 배열의 화염 퍼짐 거동의 비교 연구
박정,신현동,코바야시 히데아키,니오카 다카시,Park, Jeong,Shin, Hyun Dong,Kobayashi, Hideaki,Niioka, Takashi 대한기계학회 1999 大韓機械學會論文集B Vol.23 No.1
Experiments on flame spread in an one-dimensional droplet array up to supercritical pressures of fuel droplet have been conducted In normal gravity and microgravity. Evaporating process around unburnt droplet is observed through high-speed Schlieren and direct visualizations in detail, and flame spread rate is measured using high speed chemiluminescence images of OH radical. Flame spread behaviors are categorized into three: flame spread is continuous at low pressures and is regularly intermittent up to the critical pressure of fuel. flame spread is irregularly intermittent and zig-zag at supercritical pressures of fuel. At atmospheric pressure, the limit droplet spacing and the droplet spacing of maximum flame spread rate in microgravity are larger than those in normal gravity. In microgravity, the flame spread rate with the increase of ambient pressure decreases initially, takes a minimum, and then decreases after taking maximum. This is so because the flame spread time is determined by competing effects between the increased transfer time of thermal boundary layer due to reduced flame diameter and the reduced ignition delay time in terms of the increase of ambient pressure. Consequently, it is found that flame spread behaviors in microgravity are considerably different from those in normal gravity due to the absence of natural convection.
박정,신현동,코바야시 히데아키,니오카 다카시,Park, Jeong,Shin, Hyun Dong,Kobayashi, Hideaki,Niioka, Takashi 대한기계학회 1999 大韓機械學會論文集B Vol.23 No.1
Experimental investigations on flame spread in droplet arrays have been conducted under supercritical ambient pressures of fuel droplet. Flame spread rates are measured for n-Decane droplet of diameters of 0.75 and 1.0mm, using high speed images of OH chemiluminescence up to 3.0MPa. The pattern of flame spread is categorized into two: a continuous mode and an intermittent one. There exists a limit droplet spacing, above which flame spread does not occur. Flame spread rate with the decrease of droplet spacing increases and then decreases after takin& a maximum. It is also seen that there exists a limit ambient pressure, above which flame spread does not occur. Flame spread rate decreases monotonically with the increase of ambient pressure. Exceptionally, In the case of a small droplet spacing, flame spread with the increase of ambient pressure is extended to supercritical pressures of fuel droplet. This is caused by enhanced vaporization with the increase of ambient pressure. Consequently, in flame spread with droplet droplet spacing, the relative position of flame to droplet spacing plays an important role. The monotonic decrease with ambient pressure is mainly related to the reduction of flame radius in subcritical pressures and the extension to supercritical pressures of flame spread is caused by the reduction of ignition time of unburnt droplet due to the enhanced vaporization at supercritical pressures.