RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Identification of Functional Site of S-Modulin

        Tachibanaki, Shuji,Nanda, Kumiko,Sasaki, Kenji,Ozaki, Koichi,Kawamura, Satoru Korean Society of Photoscience 2002 Journal of Photosciences Vol.9 No.2

        S-modulin in frog or its bovine homologue, recoverin, is a 26 kDa EF-hand $Ca^{2+}$-binding protein found in rod photoreceptors. The $Ca^{2+}$ -bound form of S-modulin binds to rhodopsin kinase (Rk) and inhibits its activity. Through this regulation, S-modulin is believed to modulate the light-sensitivity of a rod. In the present study, we tried to identify the interaction site of the $Ca^{2+}$ -bound form of S-modulin to Rk. First, we mapped roughly the interaction regions by using partial peptides of S-modulin. The result suggested that a specific region near the amino terminus is the interaction site of S- modulin. We then identified the essential amino acid residues in this region by using S-modulin mutant proteins: four amino acid residues were suggested to interact with Rk. These residues are located in a small closed pocket in the $Ca^{2+}$-free, inactive form of S-modulin, but exposed to the surface of the molecules in the $Ca^{2+}$ -bound, active form of S-modulin. Two additional amino acid residues were found to be crucial for the $Ca^{2+}$ -dependent conformational changes of S-modulin. The present study firstly identified the functional site of S-modulin, a member of a neuronal calcium sensor protein family.in family..

      • Efficiency of Phototransduction Cascade in Carp Cones

        Tachibanaki, Shuji,Tsushima, Sawae,Kawamura, Satoru Korean Society of Photoscience 2002 Journal of Photosciences Vol.9 No.2

        In the vertebrate retina, rods mediate twilight vision and cones daylight vision. Rods have been purified easily from the retina, and thus the phototransduction mechanism in rods is now well documented. However, it has not been possible to purify cones in large quantities, and therefore, the knowledge on the mechanism in cones is limited. Here we report purification of carp (Cyprinus carpio) cones with a stepwise Percoll gradient. Using purified cells, we compared the phototransduction mechanism between rods and cones. The results showed that both transducin activation and phosphodiesterase activation are less effective, and visual pigment phosphorylation is faster in cones. These differences explain lower light-sensitivity and briefer photoresponse time course in cones.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼