RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        Silymarin, a flavonoid antioxidant, protects streptozotocin-induced lipidperoxidation and β-Cell damage in rat pancreas

        Manju Sharma,Tarique Anwer,K K Pillai,Syed Ehtaishamul Haque,A K Najmi,YasminSultana 경희대학교 융합한의과학연구소 2008 Oriental Pharmacy and Experimental Medicine Vol.8 No.2

        The present study is aimed at finding the influence of silymarin (a flavonoid) (25 mg/kg & 50 mg/kg) in streptozotocin (STZ)-induced diabetic rats. Type 2 diabetes was induced by single intraperitoneal injection of STZ (100 mg/kg) to 3 days old rat pups. Silymarin was administered for 15 days after the animals were confirmed diabetic (75 days after STZ injection). Blood glucose, glycosylated hemoglobin (HbA1c), lipid peroxides (LPO) levels and reduced glutathione (GSH) contents in pancreas and liver were estimated following the established procedures. Biochemical observations were further substantiated with histological examination of pancreas. Blood glucose and HbA1c levels, which were elevated by STZ, were lowered to physiological levels by the administration of silymarin. The levels of LPO were significantly increased in STZ-induced diabetic rats. Silymarin reduced the LPO levels in both pancreas and liver. GSH contents which were reduced significantly in pancreas and liver of STZ-induced diabetic rats were brought back to near normal levels by silymarin treatment. Multifocal necrotic and degenerative changes of pancreas in STZ-diabetic rats were minimized to near normal morphology by administration of silymarin as evident by histopathological examination. Silymarin showed a dose dependent protective effect on STZ-induced β-cell damage. It could be attributed to the antioxidative and free radicals scavenging properties of the flavonoid. Thus, it may be considered as a natural antioxidant with potential therapeutic application in the treatment of type 2 diabetes. The present study is aimed at finding the influence of silymarin (a flavonoid) (25 mg/kg & 50 mg/kg) in streptozotocin (STZ)-induced diabetic rats. Type 2 diabetes was induced by single intraperitoneal injection of STZ (100 mg/kg) to 3 days old rat pups. Silymarin was administered for 15 days after the animals were confirmed diabetic (75 days after STZ injection). Blood glucose, glycosylated hemoglobin (HbA1c), lipid peroxides (LPO) levels and reduced glutathione (GSH) contents in pancreas and liver were estimated following the established procedures. Biochemical observations were further substantiated with histological examination of pancreas. Blood glucose and HbA1c levels, which were elevated by STZ, were lowered to physiological levels by the administration of silymarin. The levels of LPO were significantly increased in STZ-induced diabetic rats. Silymarin reduced the LPO levels in both pancreas and liver. GSH contents which were reduced significantly in pancreas and liver of STZ-induced diabetic rats were brought back to near normal levels by silymarin treatment. Multifocal necrotic and degenerative changes of pancreas in STZ-diabetic rats were minimized to near normal morphology by administration of silymarin as evident by histopathological examination. Silymarin showed a dose dependent protective effect on STZ-induced β-cell damage. It could be attributed to the antioxidative and free radicals scavenging properties of the flavonoid. Thus, it may be considered as a natural antioxidant with potential therapeutic application in the treatment of type 2 diabetes.

      • Silymarin, a flavonoid antioxidant, protects streptozotocin-induced lipid peroxidation and β-Cell damage in rat pancreas

        Sharma, Manju,Anwer, Tarique,Pillai, K K,Haque, Syed Ehtaishamul,Najmi, A K,Sultana, Yasmin Kyung Hee Oriental Medicine Research Center 2008 Oriental pharmacy and experimental medicine Vol.8 No.2

        The present study is aimed at finding the influence of silymarin (a flavonoid) (25 mg/kg & 50 mg/kg) in streptozotocin (STZ)-induced diabetic rats. Type 2 diabetes was induced by single intraperitoneal injection of STZ (100 mg/kg) to 3 days old rat pups. Silymarin was administered for 15 days after the animals were confirmed diabetic (75 days after STZ injection). Blood glucose, glycosylated hemoglobin ($HbA_{1c}$), lipid peroxides (LPO) levels and reduced glutathione (GSH) contents in pancreas and liver were estimated following the established procedures. Biochemical observations were further substantiated with histological examination of pancreas. Blood glucose and $HbA_{1c}$ levels, which were elevated by STZ, were lowered to physiological levels by the administration of silymarin. The levels of LPO were significantly increased in STZ-induced diabetic rats. Silymarin reduced the LPO levels in both pancreas and liver. GSH contents which were reduced significantly in pancreas and liver of STZ-induced diabetic rats were brought back to near normal levels by silymarin treatment. Multifocal necrotic and degenerative changes of pancreas in STZ-diabetic rats were minimized to near normal morphology by administration of silymarin as evident by histopathological examination. Silymarin showed a dose dependent protective effect on STZ-induced $\beta$-cell damage. It could be attributed to the antioxidative and free radicals scavenging properties of the flavonoid. Thus, it may be considered as a natural antioxidant with potential therapeutic application in the treatment of type 2 diabetes.

      • KCI등재

        Protective effect of silymarin in streptozotocin-induced diabetic dyslipidaemia in rats

        Manju Sharma,K. K. Pillai,Tarique Anwer,Abul Kalam Najmi,Syed Ehtaishamul Haque,Yasmin Sultana 경희대학교 융합한의과학연구소 2010 Oriental Pharmacy and Experimental Medicine Vol.10 No.3

        The present study investigated the effect of silymarin, a flavonoid, on streptozotocin (STZ) - induced diabetic dyslipidaemia in rats. Experimental diabetes was induced by a single intraperitoneal injection of STZ (60 mg/kg). Silymarin (25 mg/kg and 50 mg/kg) was orally administered to diabetic rats for a period of 15 days. Blood glucose levels, serum lipid profile and liver glycogen levels were estimated following the established procedures. Biochemical observations were supplemented with histological examination of liver sections. Oral administration of silymarin to diabetic rats significantly (P < 0.001) decreased the blood glucose levels (259.99 ± 23.64 vs. 99.90 ±2.62 [25 mg] & 89.17 ± 3.32 [50 mg]). The most interesting finding was the significant (p < 0.001)increase in HDL-cholesterol levels (26.99 ± 0.61 vs. 40.55 ± 0.52 [25 mg] & 41.12 ± 0.37 [50 mg])whereas, there was a significant decrease in serum total cholesterol (TCh), triglycerides (TG), low density lipoprotein (LDL) and very low density lipoprotein (VLDL) cholesterol levels observed in silymarin treated diabetic rats. STZ treatment caused significant degeneration of liver parenchyma,which was normalized to near normal morphology by administration of silymarin. The findings indicate that silymarin effectively improved the overall lipid profile and restored the glycogen stores in the liver of STZ-induced diabetic rats, in a dose dependent manner. The results indicate existence of abnormalities in lipid metabolism in STZ-induced diabetic rats and suggest a protective effect of silymarin in this animal model.

      • Protective effect of silymarin in streptozotocin-induced diabetic dyslipidaemia in rats

        Sharma, Manju,Pillai, K.K.,Anwer, Tarique,Najmi, Abul Kalam,Haque, Syed Ehtaishamul,Sultana, Yasmin Kyung Hee Oriental Medicine Research Center 2010 Oriental pharmacy and experimental medicine Vol.10 No.3

        The present study investigated the effect of silymarin, a flavonoid, on streptozotocin (STZ) - induced diabetic dyslipidaemia in rats. Experimental diabetes was induced by a single intraperitoneal injection of STZ (60 mg/kg). Silymarin (25 mg/kg and 50 mg/kg) was orally administered to diabetic rats for a period of 15 days. Blood glucose levels, serum lipid profile and liver glycogen levels were estimated following the established procedures. Biochemical observations were supplemented with histological examination of liver sections. Oral administration of silymarin to diabetic rats significantly (P < 0.001) decreased the blood glucose levels ($259.99{\pm}23.64$ vs. $99.90{\pm}2.62$ [25 mg] & $89.17{\pm}3.32$ [50 mg]). The most interesting finding was the significant (p < 0.001) increase in HDL-cholesterol levels ($26.99{\pm}0.61$ vs. $40.55{\pm}0.52$ [25 mg] & $41.12{\pm}0.37$ [50 mg]) whereas, there was a significant decrease in serum total cholesterol (TCh), triglycerides (TG), low density lipoprotein (LDL) and very low density lipoprotein (VLDL) cholesterol levels observed in silymarin treated diabetic rats. STZ treatment caused significant degeneration of liver parenchyma, which was normalized to near normal morphology by administration of silymarin. The findings indicate that silymarin effectively improved the overall lipid profile and restored the glycogen stores in the liver of STZ-induced diabetic rats, in a dose dependent manner. The results indicate existence of abnormalities in lipid metabolism in STZ-induced diabetic rats and suggest a protective effect of silymarin in this animal model.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼