RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Weak fault feature extraction of rolling bearing under strong poisson noise and variable speed conditions

        Qiang Ma,Shuqian Cao,Tao Gong,Jianhua Yang 대한기계학회 2022 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.36 No.11

        Fault feature extraction of the rolling bearing under strong background noise is always a difficult problem in bearing fault diagnosis. At present, most of the research focuses on weak signal extraction under Gaussian white noise and has certain practical significance. However, the noise in engineering is often complex and changeable, Gaussian white noise cannot fully simulate the actual strong background noise. Poisson white noise is a type of typical non-Gaussian noise, which widely exists in complex mechanical impact. It is of great significance to study the weak fault feature extraction of a faulty bearing under this type of noise. At the same time, variable speed conditions occupy most rotating machinery speed conditions. Non-stationary vibration signals make it difficult to extract fault features, and the frequency spectrum ambiguity will occur because of speed fluctuation. To solve the above problems, a method of weak feature extraction of a faulty bearing based on computed order analysis (COA) and adaptive stochastic resonance (SR) is proposed. Firstly, by numerical simulation, the nonstationary fault characteristic signal corrupted with strong Poisson noise is transformed into a stationary signal in the angle domain by COA. Secondly, the influence of the parameters of the pulse arrival rate and noise intensity of Poisson white noise on the optimal SR response in the angle domain are studied, and the influence of the parameters of Poisson white noise on the fault feature extraction is given. Then, adaptive SR method is used to extract and enhance fault feature information. Finally, the effectiveness of this method in weak fault characteristic signal extraction under strong Poisson noise is verified by experiments. Numerical simulation and experimental results verify the effectiveness of the proposed method in bearing fault diagnosis under strong Poisson noise and variable speed conditions.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼