RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Morphology-performance relationships in polymer/fullerene blends probed by complementary characterisation techniques - effects of nanowire formation and subsequent thermal annealing

        Kim, Jong Soo,Wood, Sebastian,Shoaee, Safa,Spencer, Steve J.,Castro, Fernando A.,Tsoi, Wing Chung,Murphy, Craig E.,Sim, Myungsun,Cho, Kilwon,Durrant, James R.,Kim, Ji-Seon The Royal Society of Chemistry 2015 Journal of Materials Chemistry C Vol.3 No.35

        <P>We report detailed analysis of the thin film morphology (molecular packing, molecular conformational order, and vertical phase separation) - performance (charge transport, photocurrent generation, and photovoltaic performance) relationships under nanowire formation and subsequent thermal annealing in polymer:fullerene blends. Nanowires of poly(3-hexylthiophene) (P3HT) are formed by controlled precipitation from solution and blended with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) to form bulk heterojunction thin films. The formation of nanowires and further thermal annealing result in increased molecular order of the P3HT, where the short-range conformational order is maximised by annealing at 100 °C and decreases when annealed at higher temperatures, but the quality of long-range molecular packing and lamellar packing distance increase with annealing temperature up to 150 °C. The long-range order correlates strongly with an increase in hole mobility, but the reduction in short-range conformational order indicates a slight reduction in planarity of the conjugated backbone in this aggregated polymer morphology. Photoconductive atomic force microscopy reveals enhanced connectivity of the hole transporting nanowire network as a result of thermal annealing. Additionally, we find that the nanowire morphology results in a favourable vertical phase separation, with PCBM enrichment at the electron-extracting surface in the conventional architecture, which is contrary to the non-nanowire case. This effect is further encouraged by thermal annealing, resulting in an enhancement of open-circuit voltage, and represents a morphological advantage over conventional P3HT:PCBM devices. Our study identifies an important interplay between long-range and short-range molecular order in charge generation, transport, extraction, and hence solar cell device performance.</P>

      • KCI등재

        Experimental and mathematical analysis of electroformed rotating cone electrode

        Hamid Heydari,Salman Ahmadipouya,Amirhossein Shoaee Maddah,Mohammad-Reza Rokhforouz 한국화학공학회 2020 Korean Journal of Chemical Engineering Vol.37 No.4

        In this study, we present results of a mathematical model in which the governing equations of electroforming process were solved using a robust finite element solver (COMSOL Multiphysics). The effects of different parameters including applied current density, solution electrical conductivity, electrode spacing, and anode height on the copper electroforming process have been investigated. An electroforming experiment using copper electroforming cell was conducted to verify the developed model. The obtained results show that by increasing the applied current density, the electroforming process takes place faster, thereby resulting in a higher thickness of the electroformed layer. In addition, higher applied current density led to non-uniformity of the coated layer. It was revealed that by increasing electrolytic conductivity from 5 to 20 S/m, the electroformed layer became thicker. By considering three different anode heights, it was found that if the cathode and anode are the same height, the process will be more effective. Finally, it was concluded that there is an optimum value of anode-cathode spacing: above it, energy consumption and plating time are high; while below it, the resultant layer is non-uniform. The present study demonstrates that the developed model can accurately capture the physics of electroforming with a reasonable computational time.

      • Measuring Competing Recombination Losses in a Significantly Reduced Langevin System by Steady-State Photoinduced Absorption and Photocurrent Spectroscopy

        Phuong, Le Quang,Hosseini, Seyed Mehrdad,Koh, Chang Woo,Woo, Han Young,Shoaee, Safa American Chemical Society 2019 The Journal of Physical Chemistry Part C Vol.123 No.45

        <P>Understanding and disentangling photophysical properties of long-lived photoexcitations in bulk heterojunction (BHJ) solar cells, which contribute mostly to photocurrent, provide essential guidelines to their improvement. However, to construct improved physical models, their rational design relies on reliable measurement techniques for charge recombination. Here, we combine photocurrent and photoinduced absorption spectroscopy (PCPIA) to directly probe the free carrier concentration and investigate loss mechanisms of long-lived excitations in nearly 10% efficient PPDT2FBT/PC70BM BHJ solar cells under steady-state operational conditions. From the PCPIA data obtained under open-circuit and short-circuit conditions, the absorption cross section and the concentration of photoexcitations are obtained. This material system exhibits an exceptionally low bimolecular recombination rate, about 300 times smaller than the diffusion-controlled electron and hole encounter rate. Furthermore, we observe that the fill factor is limited by losses originating from long-lived photoexcitations undergoing dispersive bimolecular recombination.</P> [FIG OMISSION]</BR>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼