RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Coating of Laponite on PLA Nanofibrous for Bone Tissue Engineering Application

        Zahra Orafa,Shiva Irani,Ali Zamanian,Hadi Bakhshi,Habib Nikukar,Behafarid Ghalandari 한국고분자학회 2021 Macromolecular Research Vol.29 No.3

        In this study, electrospun polylactic acid (PLA) nanofibers were coated with osteoinductive Laponite (LAP) nanoplatelets and used as scaffolds for bone tissue engineering. The LAP nanoplatelets were physically crosslinked with high molecular weight polyethylene oxide (PEO) to make a layer of LAP/PEO network around PLA nanofibers with a thickness of 45-175 nm that was controllable through adjusting the concentration of the LAP/PEO solution (0.4, 0.8, and 1.2 wt%). The LAP/PEO layer improved the surface hydrophilicity (water contact angle from 111° to 26°) and thus the cell attachment and proliferation (p ≤ 0.05) by the scaffolds. The LAP nanoplatelets coated on the surface of PLA nanofibers could induce osteodifferentiation on human mesenchymal stem cells (hMSCs) by increasing the ALKALINE PHOSPHATASE (ALP) activity. The expression of specific osteogenic genes (ALP and OSTEONECTIN) at the transcription level (p ≤ 0.001) for the seeded hMSCs proved the osteoinductive effect of coated LAP nanoplatelets for the differentiation of stem cells to osteoblasts without using any external osteogenic inducers. The LAP-coated nanofibers can be used as an excellent scaffold for bone tissue engineering to provide an appropriate environment for direct bone tissue engineering.

      • KCI등재

        Artemisinin-loaded niosome and pegylated niosome: physicochemical characterization and effects on MCF-7 cell proliferation

        Elnaz Asgharkhani,Anahita Fathi Azarbayjani,Shiva Irani,Mohsen Chiani,Zahra Saffari,Dariush Norouzian,Azim Akbarzadeh,Seyed Mohammad Atyabi 한국약제학회 2018 Journal of Pharmaceutical Investigation Vol.48 No.3

        Artemisinin (ART)-loaded niosome and pegylated niosomes were prepared using two different techniques. Nanosized lipid vesicles were physically characterized for entrapment efficacy and stability. Particle sizes were determined and release kinetic of the optimized formulation was carried out by dialysis method. The efficacy of the developed formulation was tested on MCF7 cells and cytotoxicity was accomplished by MTT assay. Common observation was the effect of pegylation on the reduction of vesicle size due to its hydrophilic nature. Span 60 niosomes had slightly larger vesicle size than Span 20 niosomes. Over all the good stability was observed over 60 days. In vitro drug release studies indicate gradual release of niosome over 40 h. similar trend in drug release was observed for most formulation except for the multilammellar pegylated niosomes. Pegylation of niosomes causes increased stability and efficacy of ART. Cytotoxicity ( IC50) was evaluated at different time of incubation at 48 and 72 h for selected niosomal formulations. Pegylated ART niosomes show great advantages in term of interaction with MCF-7 cell membrane. Results suggest that pegylated niosomes may be an appropriate candidate for the clinical administration of ART.

      • KCI등재후보

        Identification of novel potential drugs and miRNAs biomarkers in lung cancer based on gene co-expression network analysis

        Sara Hajipour,Sayed Mostafa Hosseini,Shiva Irani,Mahmood Tavallaie Korea Genome Organization 2023 Genomics & informatics Vol.21 No.3

        Non-small cell lung cancer (NSCLC) is an important cause of cancer-associated deaths worldwide. Therefore, the exact molecular mechanisms of NSCLC are unidentified. The present investigation aims to identify the miRNAs with predictive value in NSCLC. The two datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed miRNAs (DEmiRNA) and mRNAs (DEmRNA) were selected from the normalized data. Next, miRNA-mRNA interactions were determined. Then, co-expression network analysis was completed using the WGCNA package in R software. The co-expression network between DEmiRNAs and DEmRNAs was calculated to prioritize the miRNAs. Next, the enrichment analysis was performed for DEmiRNA and DEmRNA. Finally, the drug-gene interaction network was constructed by importing the gene list to dgidb database. A total of 3,033 differentially expressed genes and 58 DEmiRNA were recognized from two datasets. The co-expression network analysis was utilized to build a gene co- expression network. Next, four modules were selected based on the Z<sub>summary</sub> score. In the next step, a bipartite miRNA-gene network was constructed and hub miRNAs (let-7a-2-3p, let-7d-5p, let-7b-5p, let-7a-5p, and let-7b-3p) were selected. Finally, a drug-gene network was constructed while SUNITINIB, MEDROXYPROGESTERONE ACETATE, DOFETILIDE, HALOPERIDOL, and CALCITRIOL drugs were recognized as a beneficial drug in NSCLC. The hub miRNAs and repurposed drugs may act a vital role in NSCLC progression and treatment, respectively; however, these results must validate in further clinical and experimental assessments.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼