RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SiC MOSFET Crosstalk Modelling with Suppression Considering Impacts of dv/dt and di/dt

        Wenhao Xie,Shiqi Ji,Zhengming Zhao,Xin Mo 전력전자학회 2023 ICPE(ISPE)논문집 Vol.2023 No.-

        Compared to Si IGBTs, SiC MOSFETs can reduce switching losses, achieve higher switching frequencies and enable smaller converter size. However, due to the high dv/dt of SiC MOSFETs, certain topologies, such as two SiC MOSFETs in a phase-leg configuration, are highly sensitive to crosstalk, which can slow down switching speed and even reduce gate oxide’s lifetime. In this paper, an accurate model of crosstalk is established by considering the impacts of both dv/dt and di/dt in the power loop. The proposed model can simulate the gate-source voltage on bare die of SiC MOSFETs, allowing for a more accurate evaluation of the impact of crosstalk. Model verification is implemented using a double pulse test (DPT) platform and a gate driver with active miller clamp technology. Key parameters of the model are extracted from both 3D simulation models and measurement experiments. The DPT waveform of power loop is used as the excitation source in the simulation, and the simulated gate-source waveform shows good agreement with the experimental waveform. Based on the model, parameter sensitivity analysis is performed, and suggestions for improving crosstalk suppression are proposed.

      • KCI등재

        Design Methodology for Optimal Phase-Shift Modulation of Non-Inverting Buck-Boost Converters

        Bingqing Shi,Zhengming Zhao,Kai Li,Gaohui Feng,Shiqi Ji,Jiayue Zhou 전력전자학회 2019 JOURNAL OF POWER ELECTRONICS Vol.19 No.5

        The non-inverting buck-boost converter (NIBB) is a step-up and step-down DC-DC converter suitable for wide-input-voltagerange applications. However, when the input voltage is close to the output voltage, the NIBB needs to operate in the buck-boost mode, causing a significant efficiency reduction since all four switches operates in the PWM mode. Considering both the current stress limitation and the efficiency optimization, a novel design methodology for the optimal phase-shift modulation of a NIBB in the buck-boost mode is proposed in this paper. Since the four switches in the NIBB form two bridges, the shifted phase between the two bridges can serve as an extra degree of freedom for performance optimization. With general phase-shift modulation, the analytic current expressions for every duty ratio, shifted phase and input voltage are derived. Then with the two key factors in the NIBB, the converter efficiency and the switch current stress, taken into account, an objective function with constraints is derived. By optimizing the derived objective function over the full input voltage range, an offline design methodology for the optimal modulation scheme is proposed for efficiency optimization on the premise of current stress limitation. Finally, the designed optimal modulation scheme is implemented on a DSPs and the design methodology is verified with experimental results on a 300V-1.5kW NIBB prototype.

      • SCIESCOPUSKCI등재

        Design Methodology for Optimal Phase-Shift Modulation of Non-Inverting Buck-Boost Converters

        Shi, Bingqing,Zhao, Zhengming,Li, Kai,Feng, Gaohui,Ji, Shiqi,Zhou, Jiayue The Korean Institute of Power Electronics 2019 JOURNAL OF POWER ELECTRONICS Vol.19 No.5

        The non-inverting buck-boost converter (NIBB) is a step-up and step-down DC-DC converter suitable for wide-input-voltage-range applications. However, when the input voltage is close to the output voltage, the NIBB needs to operate in the buck-boost mode, causing a significant efficiency reduction since all four switches operates in the PWM mode. Considering both the current stress limitation and the efficiency optimization, a novel design methodology for the optimal phase-shift modulation of a NIBB in the buck-boost mode is proposed in this paper. Since the four switches in the NIBB form two bridges, the shifted phase between the two bridges can serve as an extra degree of freedom for performance optimization. With general phase-shift modulation, the analytic current expressions for every duty ratio, shifted phase and input voltage are derived. Then with the two key factors in the NIBB, the converter efficiency and the switch current stress, taken into account, an objective function with constraints is derived. By optimizing the derived objective function over the full input voltage range, an offline design methodology for the optimal modulation scheme is proposed for efficiency optimization on the premise of current stress limitation. Finally, the designed optimal modulation scheme is implemented on a DSPs and the design methodology is verified with experimental results on a 300V-1.5kW NIBB prototype.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼