RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Application of amine-functioned Fe3O4 nanoparticles with HPEI for effective humic acid removal from aqueous solution: Modeling and optimization

        Seyedeh Mahtab Pormazar,Mohammad Hassan Ehrampoush,Mohammad Taghi Ghaneian,Mehdi Khoobi,Parvaneh Talebi,Arash Dalvand 한국화학공학회 2020 Korean Journal of Chemical Engineering Vol.37 No.1

        Humic acids are one type of natural organic matter and precursors of chloro organic compounds that cause a major problematic issue for water treatment plants. In the present study, Hyperbranched polyethylenimine (HPEI) was grafted onto Fe3O4 nanoparticles for HA adsorption from aqueous solution. Fe3O4@HPEI nanoparticles were characterized via TEM, SEM, FTIR, XRD, VSM, and BET analysis. The effects of various operational parameters including initial HA concentration, pH, adsorbent dose, contact time and ionic strength on the HA removal were assessed. According to the obtained statistical model, the optimal condition was acquired at the initial HA concentration 79mg/L, adsorbent dose 0.128 g/L, pH 3 and contact time 29 min, which up to 97.27% HA were adsorbed by Fe3O4@HPEI that was close to the predicted result by the model (95.6%) that confirmed the validity of the selected model. The adsorption data were fitted to the pseudo-second-order kinetic and Freundlich isotherm. Thermodynamic parameters indicated that the adsorption process was spontaneous and endothermic. The fabricated Fe3O4@HPEI nanoparticles could be repeatedly utilized as a suitable adsorbent to remove HA from the aqueous environment.

      • KCI등재

        Adsorption of Direct Red 23 dye from aqueous solution by means of modified montmorillonite nanoclay as a superadsorbent: Mechanism, kinetic and isotherm studies

        Seyedeh Mahtab Pormazar,Arash Dalvand 한국화학공학회 2020 Korean Journal of Chemical Engineering Vol.37 No.12

        A novel adsorbent of modified nanoclay was synthesized by covering of alum on the montmorillonite nanoclay (Al/nanoclay). Al/nanoclay was applied as an efficient superadsorbent to remove Direct Red 23 (DR23) from colored wastewater. The adsorbent was characterized by Fourier transform infrared spectroscopy, energy-dispersive Xray spectroscopy, and zeta potential analysis. The effects of various operating parameters, such as contact time, initial dye concentration, adsorbent dose, pH and ionic strength on the performance of adsorption, have been studied. The adsorption experiments showed that pH has an obvious effect on the adsorption efficiency and the highest percentage of DR23 dye removal was observed at pH 2. Zeta potential measurement confirmed that the adsorption mechanism is ascribed to electrostatic interaction between sulfonic groups of the anionic dye and the positive surface charge of the adsorbent. The pseudo-second-order kinetic model and the Langmuir isotherm were found to best describe the DR23 adsorption and the maximum monolayer adsorption capacity at the conditions of pH 2 and the adsorbent dose of 0.05 g/L was 2,500mg/g. The findings recommend that Al/nanoclay can be successfully used for DR23 dye removal from the colored wastewater.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼