RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Experimental study and artificial intelligence modeling of liquid-liquid mass transfer in multiple-ring microchannels

        Fardin Hosseini,Masoud Rahimi 한국화학공학회 2020 Korean Journal of Chemical Engineering Vol.37 No.3

        This paper reports the results of using multiple-ring microchannels for enhancing liquid-liquid extraction performance. The effects of geometrical parameters including ring and distance characteristics on the extraction efficiency were studied. The mass transfer performance was analyzed using Water+Alizarin Red S+1-octanol system. By change in geometrical parameters, the extraction efficiency of multiple-ring microchannels improved up to 62.9% compared with that of the plain one. The performance ratio is defined based on two contrary effects of friction factor and extraction efficiency for evaluating the extraction performance. A performance ratio of 1.5 was achieved that confirmed the advantage of using this type of microfluidic extraction system. Artificial neural network and adaptive neurofuzzy inference system were utilized to evaluate the performance ratio of the multiple-ring microchannels. The mean relative error values of the testing data were 0.397% and 0.888% for the neural network and the neuro-fuzzy system, respectively. The estimation accuracy for both models is appropriate, but the precision of the neural network id higher than that of the neuro-fuzzy system. The genetic algorithm approach was employed to develop a new empirical correlation for predicting the performance ratio with a mean relative error of 1.558%

      • KCI등재후보

        Immunoinformatics studies and design of a novel multi-epitope peptide vaccine against Toxoplasma gondiibased on calcium-dependent protein kinases antigens through an in-silico analysis

        Ghaffari Ali Dalir,Rahimi Fardin 대한백신학회 2024 Clinical and Experimental Vaccine Research Vol.13 No.2

        Purpose: Infection by the intracellular apicomplexan parasite Toxoplasma gondii has serious clinical consequences in humans and veterinarians around the world. Although about a third of the world’s population is infected with T. gondii, there is still no effective vaccine against this disease. The aim of this study was to develop and evaluate a multimeric vaccine against T. gondii using the proteins calcium-dependent protein kinase (CDPK)1, CDPK2, CDPK3, and CDPK5. Materials and Methods: Top-ranked major histocompatibility complex (MHC)-I and MHC-II binding as well as shared, immunodominant linear B-cell epitopes were predicted and linked using appropriate linkers. Moreover, the 50S ribosomal protein L7/L12 (adjuvant) was mixed with the construct’s N-terminal to increase the immunogenicity. Then, the vaccine’s physicochemical characteristics, antigenicity, allergenicity, secondary and tertiary structure were predicted. Results: The finally-engineered chimeric vaccine had a length of 680 amino acids with a molecular weight of 74.66 kDa. Analyses of immunogenicity, allergenicity, and multiple physiochemical parameters indicated that the constructed vaccine candidate was soluble, nonallergenic, and immunogenic, making it compatible with humans and hence, a potentially viable and safe vaccine candidate against T. gondii parasite. Conclusion: In silico, the vaccine construct was able to trigger primary immune responses. However, further laboratory studies are needed to confirm its effectiveness and safety.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼