RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • A New Adaptive-Weighted Fusion Rule for Wavelet based PET/CT Fusion

        R. Barani,M. Sumathi 보안공학연구지원센터 2016 International Journal of Signal Processing, Image Vol.9 No.11

        In recent years the Wavelet Transform (WT) had an important role in various applications of signal and image processing. In Image Processing, WT is more useful in many domains like image denoising, feature segmentation, compression, restoration, image fusion, etc. In WT based image fusion, initially the source images are decomposed into approximation and detail coefficients and followed by combining the coefficients using the suitable fusion rules. The resultant fused image is reconstructed by applying inverse WT on the combined coefficients. This paper proposes a new adaptive fusion rule for combining the approximation coefficients of CT and PET images. The Excellency of the proposed fusion rule is stamped by measuring the image information metrics, EOG, SD and ENT on the decomposed approximation coefficients. On the other hand, the detail coefficients are combined using several existing fusion rules. The resultant fused images are quantitatively analyzed using the non-reference image quality, image fusion and error metrics. The analysis declares that the newly proposed fusion rule is more suitable for extracting the complementary information from CT and PET images and also produces the fused image which is rich in content with good contrast and sharpness.

      • SCIESCOPUSKCI등재

        3D reconstruction of two-phase random heterogeneous material from 2D sections: An approach via genetic algorithms

        Pizzocri, D.,Genoni, R.,Antonello, F.,Barani, T.,Cappia, F. Korean Nuclear Society 2021 Nuclear Engineering and Technology Vol.53 No.9

        This paper introduces a method to reconstruct the three-dimensional (3D) microstructure of two-phase materials, e.g., porous materials such as highly irradiated nuclear fuel, from two-dimensional (2D) sections via a multi-objective optimization genetic algorithm. The optimization is based on the comparison between the reference and reconstructed 2D sections on specific target properties, i.e., 2D pore number, and mean value and standard deviation of the pore-size distribution. This represents a multi-objective fitness function subject to weaker hypotheses compared to state-of-the-art methods based on n-points correlations, allowing for a broader range of application. The effectiveness of the proposed method is demonstrated on synthetic data and compared with state-of-the-art methods adopting a fitness based on 2D correlations. The method here developed can be used as a cost-effective tool to reconstruct the pore structure in highly irradiated materials using 2D experimental data.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼