RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Optimum synthesis of esomeprazole catalyzed by Rhodococcus rhodochrous ATCC 4276 through response surface methodology

        Yuanyuan Zhang,Qiuxiang Zhao,Hui Tang,Huiling Li,Depeng Li,Zhiyong Wang,Xin Gao,Fanye Wang 한국화학공학회 2021 Korean Journal of Chemical Engineering Vol.38 No.5

        Enantiopure esomeprazole is an important drug in the treatment of gastric ulcer. The asymmetric sulfoxidation of omeprazole thioether was catalyzed by immobilized cells of a mutant of Rhodococcus rhodocrous ATCC 4276 to synthesize esomeprazole. The bioreaction was carried out in a biphasic system (chloroform-water), at a high substrate concentration (200mM), and optimized using response surface methodology (RSM). The optimal yield of esomeprazole obtained was 94.8% with e.e. (>99%) without the formation of the sulfone form as a byproduct, under the optimal conditions: the concentration of immobilized cells, 283.5 g/L, the incubation temperature, 37.05 oC, and pH of phosphate buffer, 7.35, respectively. A quadratic polynomial model was developed with R2 of 0.9998, which indicates that the model predicts the observed data with very high accuracy. The mutant exhibited a high enantioselective activity and substrate and product tolerance. The small size of immobilized cell beads (0.5-1 mm) creates a large reaction interface. The aerated flask provides enough oxygen for a high concentration of cells. The significant improvement of substrate tolerance may mainly be attributed to employing the chloroform-water biphasic system because organic substrates may be partitioned in the organic phase, eliminating potential damage and inhibition to cells. Based on the above, the asymmetric sulfoxidation catalyzed by immobilized bacterial cells is therefore more promising for efficient synthesis of chiral sulfoxides.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼