RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Directional mutation and crossover for immature performance of whale algorithm with application to engineering optimization

        Qi Ailiang,Zhao Dong,Yu Fanhua,Heidari Ali Asghar,Chen Huiling,Xiao Lei 한국CDE학회 2022 Journal of computational design and engineering Vol.9 No.2

        In recent years, a range of novel and pseudonovel optimization algorithms has been proposed for solving engineering problems. Swarm intelligence optimization algorithms (SIAs) have become popular methods, and the whale optimization algorithm (WOA) is one of the highly discussed SIAs. However, regardless of novelty concerns about this method, the basic WOA is a weak method compared to top differential evolutions and particle swarm variants, and it suffers from the problem of poor initial population quality and slow convergence speed. Accordingly, in this paper, to increase the diversity of WOA versions and enhance the performance of WOA, a new WOA variant, named LXMWOA, is proposed, and based on the Lévy initialization strategy, the directional crossover mechanism, and the directional mutation mechanism. Specifically, the introduction of the Lévy initialization strategy allows initial populations to be dynamically distributed in the search space and enhances the global search capability of the WOA. Meanwhile, the directional crossover mechanism and the directional mutation mechanism can improve the local exploitation capability of the WOA. To evaluate its performance, using a series of functions and three models of engineering optimization problems, the LXMWOA was compared with a broad array of competitive optimizers. The experimental results demonstrate that the LXMWOA is significantly superior to its exploration and exploitation capability peers. Therefore, the proposed LXMWOA has great potential to be used for solving engineering problems.

      • KCI등재

        Directional crossover slime mould algorithm with adaptive Lévy diversity for the optimal design of real-world problems

        Qi Ailiang,Zhao Dong,Yu Fanhua,Liu Guangjie,Heidari Ali Asghar,Chen Huiling,Algarni Abeer D.,Elmannai Hela,Gui Wenyong 한국CDE학회 2022 Journal of computational design and engineering Vol.9 No.6

        The slime mould algorithm (SMA) has become a classical algorithm applied in many fields since it was presented. Nevertheless, when faced with complex tasks, the algorithm converges slowly and tends to fall into the local optimum. So, there is still room for improvement in the performance of SMA. This work proposes a novel SMA variant (SDSMA), combining the adaptive Lévy diversity mechanism and directional crossover mechanism. Firstly, the adaptive Lévy diversity mechanism can improve population diversity. Then, the directional crossover mechanism can enhance the balance of exploration and exploitation, thus helping SDSMA to increase the convergence speed and accuracy. SDSMA is compared with SMA variants, original algorithms, improved algorithms, improved-SMAs, and others on the benchmark function set to verify its performance. Meanwhile, the Wilcoxon signed-rank test, the Friedman test, and other analytical methods are considered to analyze the experimental results. The analysis results show that SDSMA with two strategies significantly improves the performance of SMA. Meanwhile, the computational cost of SDSMA is smaller than that of SMA on benchmark function. Finally, the proposed algorithm is applied to three real-world engineering design problems. The experiments prove that SDSMA is an effective aid tool for computationally complex practical tasks.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼