RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        In Situ Reactive Compatibilization of PP/ABS Blends via Friedel-Crafts Alkylation Reaction

        Mir Karim Razavi Aghjeh,Parvaneh Eskandari,Majid Mehrabi Mazidi 한국고분자학회 2016 Macromolecular Research Vol.24 No.1

        Friedel-Crafts alkylation reaction was employed to reactively compatibilize the polypropylene (PP)/acrylonitrile- butadiene-styrene (ABS) blends, using AlCl3 as a catalyst. Rheology, morphology and mechanical properties of the reactive compatibilized blends along with the reference un-compatibilized samples were studied. Scanning electron microscopy (SEM) observations showed that blends containing catalyst exhibited an improvement in the dispersion state of ABS rubber particles. The results of mechanical tests revealed that reactive compatibilization partly increased the ultimate strength and Izod impact strength of the blends with a loss in tensile ductility. The change in these properties was explained in terms of different chemical reactions including grafting and degradation. Occurrence of these reactions was confirmed using different viscoelastic properties of the compatibilized blend samples. A great improvement in ultimate strength and impact toughness to levels much higher than those of neat PP was achieved in reactively compatibilized PP/ABS blends containing PP-g-MA. These findings were justified by morphological and rheological analyses. The formation of graft copolymer was also confirmed using Fourier transform infrared spectroscopy (FTIR) measurements. The results of impact toughness data were in agreement with the interfacial tension values measured via contact angle analysis. The deformation behavior of the different compatibilized samples was rationalized via fractographic study of the impact-fractured surfaces.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼