RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Enhanced Privacy Preservation of Cloud Data by using ElGamal Elliptic Curve (EGEC) Homomorphic Encryption Scheme

        ( M. Vedaraj ),( P. Ezhumalai ) 한국인터넷정보학회 2020 KSII Transactions on Internet and Information Syst Vol.14 No.11

        Nowadays, cloud is the fastest emerging technology in the IT industry. We can store and retrieve data from the cloud. The most frequently occurring problems in the cloud are security and privacy preservation of data. For improving its security, secret information must be protected from various illegal accesses. Numerous traditional cryptography algorithms have been used to increase the privacy in preserving cloud data. Still, there are some problems in privacy protection because of its reduced security. Thus, this article proposes an ElGamal Elliptic Curve (EGEC) Homomorphic encryption scheme for safeguarding the confidentiality of data stored in a cloud. The Users who hold a data can encipher the input data using the proposed EGEC encryption scheme. The homomorphic operations are computed on encrypted data. Whenever user sends data access permission requests to the cloud data storage. The Cloud Service Provider (CSP) validates the user access policy and provides the encrypted data to the user. ElGamal Elliptic Curve (EGEC) decryption was used to generate an original input data. The proposed EGEC homomorphic encryption scheme can be tested using different performance metrics such as execution time, encryption time, decryption time, memory usage, encryption throughput, and decryption throughput. However, efficacy of the ElGamal Elliptic Curve (EGEC) Homomorphic Encryption approach is explained by the comparison study of conventional approaches.

      • KCI등재

        Artificial Neural Network with Firefly Algorithm-Based Collaborative Spectrum Sensing in Cognitive Radio Networks

        Velmurugan. S,P.Ezhumalai,E.A. Mary Anita 한국인터넷정보학회 2023 KSII Transactions on Internet and Information Syst Vol.17 No.7

        Recent advances in Cognitive Radio Networks (CRN) have elevated them to the status of a critical instrument for overcoming spectrum limits and achieving severe future wireless communication requirements. Collaborative spectrum sensing is presented for efficient channel selection because spectrum sensing is an essential part of CRNs. This study presents an innovative cooperative spectrum sensing (CSS) model that is built on the Firefly Algorithm (FA), as well as machine learning artificial neural networks (ANN). This system makes use of user grouping strategies to improve detection performance dramatically while lowering collaboration costs. Cooperative sensing wasn't used until after cognitive radio users had been correctly identified using energy data samples and an ANN model. Cooperative sensing strategies produce a user base that is either secure, requires less effort, or is faultless. The suggested method's purpose is to choose the best transmission channel. Clustering is utilized by the suggested ANN-FA model to reduce spectrum sensing inaccuracy. The transmission channel that has the highest weight is chosen by employing the method that has been provided for computing channel weight. The proposed ANN-FA model computes channel weight based on three sets of input parameters: PU utilization, CR count, and channel capacity. Using an improved evolutionary algorithm, the key principles of the ANN-FA scheme are optimized to boost the overall efficiency of the CRN channel selection technique. This study proposes the Artificial Neural Network with Firefly Algorithm (ANN-FA) for cognitive radio networks to overcome the obstacles. This proposed work focuses primarily on sensing the optimal secondary user channel and reducing the spectrum handoff delay in wireless networks. Several benchmark functions are utilized We analyze the efficacy of this innovative strategy by evaluating its performance. The performance of ANN-FA is 22.72 percent more robust and effective than that of the other metaheuristic algorithm, according to experimental findings.The proposed ANN-FA model is simulated using the NS2 simulator, The results are evaluated in terms of average interference ratio, spectrum opportunity utilization, three metrics are measured: packet delivery ratio (PDR), end-to-end delay, and end-to-average throughput for a variety of different CRs found in the network.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼