RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        In vitro and Mechanism Study of Poly(ethylene-co-vinyl acetate)-Based Implant for Sustained Release of Vitamin B12

        Chi Zhang,Allan J. Easteal,Neil R. Edmonds,Genhai Liang,Majid Razzak,Wayne Leech 한국고분자학회 2010 Macromolecular Research Vol.18 No.7

        A polymer-vitamin B12 implant system has been developed to overcome the disadvantages of traditional vitamin B12 administration to sheep. The ethylene/vinyl acetate (EVAc) copolymer was pre-blended with crystalline vitamin B12. The blends were then extruded at 100 ºC at a constant pressure and rate using a piston extruder to form a polymer-vitamin B12 composite cord. The final implant was a cylinder 2 mm in diameter and 4 mm in length. Determination of the rate of vitamin B12 release from the implant into a pH7.4 phosphate buffer at 37 oC showed that the release rate was strongly dependent on the feed concentration, size and shape of vitamin B12 crystals. The well-known Korsmeyer-Peppas exponential equation was applied to and the release mechanism was found to be a typical anomalous transport mechanism with a strong diffusion-controlled feature between pure diffusion-controlled and Case-II transport mechanisms because the n values obtained were between 0.45 and 0.51 for most polymer-vitamin B12 cylindrical implant systems.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼