RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Fabrication and Characterization of Electrospun Gelatin-Heparin Nanofibers as Vascular Tissue Engineering

        Heyun Wang,Yakai Feng,Zichen Fang,Ruofang Xiao,Wenjie Yuan,Musammir Khan 한국고분자학회 2013 Macromolecular Research Vol.21 No.8

        In this paper, heparin was introduced into electrospun gelatin nanofibrous scaffold for assessment as a controlled delivery device in vascular tissue engineering application. Hybrid gelatin-heparin fibers with smooth surfaces and no bead defects were produced from gelatin solutions with 18% w/v in acetic acid aqueous solution. A significant decrease in fiber diameter was observed when the heparin content was increased from 1 to 5 wt%. The properties of composite gelatin-heparin scaffolds were confirmed by Fourier transform infrared spectroscopy (FTIR)and differential scanning calorimetry (DSC) measurement. The gelatin-heparin fibrous scaffolds were also cross-linked using 1 wt% glutaraldehyde vapor-phase for 7 days. A sustained release of heparin could be achieved from gelatinheparin scaffolds over 14 days. The results of the biocompatibility in vitro tests carried out using human umbilical vein endothelial cells indicated good cell viability and proliferation on the gelatin-heparin scaffolds. The results demonstrated that the use of electrospun gelatin fibers as heparin carriers could be promising for vascular tissue applications.

      • KCI등재

        Immobilized Bioactive Agents onto Polyurethane Surface with Heparin and Phosphorylcholine Group

        Mingqi Tan,Yakai Feng,Heyun Wang,Li Zhang,Musammir Khan,Jintang Guo,Qingliang Chen,Jianshi Liu 한국고분자학회 2013 Macromolecular Research Vol.21 No.5

        Heparin (HEP) and phosphorylcholine groups (PC) were grafted onto the polyurethane (PU) surface in order to improve biocompatibility and anticoagulant activity. After the surface grafting sites of PU were amplified with the primary amine groups of polyethylenimine (PEI), heparin was covalently linked onto the surface by the reaction between the amino group and the carboxyl group. PC groups were covalently immobilized on the PU-PEI surface through the reaction between the amino group and the aldehyde group of phosphorylcholine glyceraldehyde (PCGA). The surface density of primary amine groups was determined by a ninhydrin assay. The amino group density reached a maximum of 0.88 μmol/cm2 upon incorporation of 10 wt% PEI. The amount of heparin covalently immobilized on the PU-PEI surface was determined by the toluidine blue method. The grafting chemistry resulted in the comparatively dense immobilization of HEP (2.6 μg/cm2) and PC to the PU-PEI surfaces. The HEP and PC modified surfaces were characterized by water uptake (PU 0.15 mg/cm2, PU-PEI 3.54 mg/cm2, PU-HEP 2.04 mg/cm2, PU-PC 2.38 mg/cm2), water contact angle (PU 95.3º, PU-PEI 34.0º, PU-HEP 39.5º, PU-PC 37.2º), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS),atomic force microscopy (AFM), and scanning electron microscope (SEM). The results demonstrated that the PUPEI surface was successfully grafted with HEP and PC. The hydrophilicity and hemocompatibility of these grafted surfaces were significantly improved. These results suggested that the PU-HEP and PU-PC composite films are promising candidates for blood contacting tissue engineering.

      • KCI등재

        Biomimetic Surface Modification of Polycarbonateurethane Film via Phosphorylcholine-Graft for Resisting Platelet Adhesion

        Wei Gao,Jintang Guo,Yakai Feng,Jian Lu,Musammir Khan 한국고분자학회 2012 Macromolecular Research Vol.20 No.10

        Phosphorylcholine groups were covalently introduced onto a polycarbonateurethane (PCU) surface in order to create a biomimetic structure on the polymer surfaces. After introducing primary amine groups onto the polymer surface by 1,6-hexanediamine, phosphorylcholine groups were covalently linked onto the surface by the reductive amination between the amino group and the aldehyde group of phosphorylcholine glyceraldehyde (PCGA). The results of water contact angle test, X-ray photoelectron spectroscopy (XPS), and X-ray fluorescence spectrometer (XRF) analysis of the modified films indicated that PCGA had already been covalently linked to the PCU surface. The topographies and surface roughnesses were both imaged and measured by atomic force microscopy (AFM). Scanning electron microscopy (SEM)observation of the PCU films after treatment with platelet-rich plasma demonstrated that platelets had rarely adhered to the surface of the PCGA-grafted PCU films but had mainly adhered to the surface of the blank PCU films. The platelet adhesion result indicated that the PC modified PCU films could resist platelet adhesion after grafting with PCGA, and that these PCGA-grafted PCU materials, potentially, might be applied as blood-contacting materials.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼