RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Removal of arsenic from aqueous solution using polyaniline/rice husk nanocomposite

        Mohammad Soleimani Lashkenari,Hossein Eisazadeh,Behzad Davodi 한국화학공학회 2011 Korean Journal of Chemical Engineering Vol.28 No.7

        The present study deals with the adsorption of arsenic ions from aqueous solution on polyaniline/rice husk (PAn/RH) nanocomposite. Batch studies were performed to evaluate the influence of various experimental parameters like pH, adsorbent dosage, contact time and the effect of temperature. Optimum conditions for arsenic removal were found to be pH 10, adsorbent dosage of 10 g/L and equilibrium time 30 minutes. Adsorption of arsenic followed pseudo-second-order kinetics. The equilibrium adsorption isotherm was better described by Freundlich adsorption isotherm model. The adsorption capacity (q_max) of PAn/RH for arsenic ions in terms of monolayer adsorption was 34.48mg/g. The change of entropy (ΔS^0) and enthalpy (ΔH^0) was estimated at −0.066 kJ/(mol K) and −22.49 kJ/mol, respectively. The negative value of the Gibbs free energy (ΔG0) indicates feasible and spontaneous adsorption of arsenic on PAn/RH.

      • KCI등재

        A comparative study on the performance of highly conductive sulfonated poly(ether ether ketone) PEM modified by halloysite nanotubes, sulfonated polystyrene and phosphotungstic acid

        Seyed Hesam-Aldin Samaei,Gholamreza Bakeri,Mohammad Soleimani Lashkenari 한국화학공학회 2022 Korean Journal of Chemical Engineering Vol.39 No.2

        Proton transfer is the most important task of proton exchange membranes (PEMs) for application in fuel cells. One vital disadvantage of currently used commercial Nafion membranes is the low proton conductivity at high temperatures. Therefore, the objective of this research was to increase the proton conductivity of PEMs based on sulfonated poly (ether ether ketone) (SPEEK). Herein, modification of SPEEK-based PEM was carried out using polydopamine- coated halloysite nanotubes (HNT) alone and in combination with sulfonated polystyrene (SPS) and phosphotungstic acid (PWA). In this method, poly (ether ether ketone) sulfonation process was performed under optimum operating conditions to create more sulfonic acid groups on its chains. Here, polydopamine was doped on the outer surface of HNT (DHNT) and employed as the additive to create additional proton transferring pathways in the membrane. The hydrophilicity of the modified nanotube was enhanced through silanization (named as DHNTS). Moreover, SPS and PWA were applied to improve the ability of protons to transfer through the proton barrier channels in the membrane. Performing the sulfonation of polystyrene in the solution phase was a novel approach in this study, which led to significant increase in the degree of sulfonation. The results showed that the SPEEK/DHNTS|SPS and SPEEK/DHNTS|PWA membranes in the presence of 15% weight ratio additives and 100% relative humidity exhibited 109% and 90% higher proton conductivity than the neat SPEEK membrane, respectively. Furthermore, 20% and 10% higher proton conductivity was observed for the aforementioned membranes compared to the commercial Nafion117 membrane. Because of the strong acid-base bonding between DHNTS and SPEEK and the sticky nature of polydopamine, the chemical stability of the modified PEMs was higher than the neat membrane. In terms of fuel cell performance, there was little difference between Nafion117 membrane and DHNTS-modified PEM. These modified membranes are therefore suitable alternatives to address the commercial Nafion membrane’s gap in the fuel cells.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼