RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 학술지명
        • 주제분류
        • 발행연도
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Rescaling of metal oxide nanocrystals for energy storage having high capacitance and energy density with robust cycle life

        Jeong, Hyung Mo,Choi, Kyung Min,Cheng, Tao,Lee, Dong Ki,Zhou, Renjia,Ock, Il Woo,Milliron, Delia J.,Goddard III, William A.,Kang, Jeung Ku National Academy of Sciences 2015 PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF Vol.112 No.26

        <P><B>Significance</B></P><P>The combined study of experiments and molecular dynamics simulations demonstrates that metal oxide nanocrystals on graphene can be rescaled into atomic clusters. It is notable that the capacitance of 3,023 F per the mass of NiO, matching the measured capacitance of 2,231 per the total electrode mass, exceeds the theoretical gravimetric capacitance of 2,618 F available via ion-to-atom redox reactions. This approach thus provides a new pathway to realize full capacitance via ion-to-atom Faradaic redox reactions. Furthermore, assembly with a rescaled metal oxide positive electrode shows that further development of high-capacity negative counter electrode materials can pave a new route to address challenging energy storage issues.</P><P>Nanocrystals are promising structures, but they are too large for achieving maximum energy storage performance. We show that rescaling 3-nm particles through lithiation followed by delithiation leads to high-performance energy storage by realizing high capacitance close to the theoretical capacitance available via ion-to-atom redox reactions. Reactive force-field (ReaxFF) molecular dynamics simulations support the conclusion that Li atoms react with nickel oxide nanocrystals (NiO-n) to form lithiated core–shell structures (Ni:Li<SUB>2</SUB>O), whereas subsequent delithiation causes Ni:Li<SUB>2</SUB>O to form atomic clusters of NiO-a. This is consistent with in situ X-ray photoelectron and optical spectroscopy results showing that Ni<SUP>2+</SUP> of the nanocrystal changes during lithiation–delithiation through Ni<SUP>0</SUP> and back to Ni<SUP>2+</SUP>. These processes are also demonstrated to provide a generic route to rescale another metal oxide. Furthermore, assembling NiO-a into the positive electrode of an asymmetric device enables extraction of full capacitance for a counter negative electrode, giving high energy density in addition to robust capacitance retention over 100,000 cycles.</P>

      • Prospects of Nanoscience with Nanocrystals

        Kovalenko, Maksym V.,Manna, Liberato,Cabot, Andreu,Hens, Zeger,Talapin, Dmitri V.,Kagan, Cherie R.,Klimov, Victor I.,Rogach, Andrey L.,Reiss, Peter,Milliron, Delia J.,Guyot-Sionnnest, Philippe,Konstan American Chemical Society 2015 ACS NANO Vol.9 No.2

        <P>Colloidal nanocrystals (NCs, <I>i.e.</I>, crystalline nanoparticles) have become an important class of materials with great potential for applications ranging from medicine to electronic and optoelectronic devices. Today’s strong research focus on NCs has been prompted by the tremendous progress in their synthesis. Impressively narrow size distributions of just a few percent, rational shape-engineering, compositional modulation, electronic doping, and tailored surface chemistries are now feasible for a broad range of inorganic compounds. The performance of inorganic NC-based photovoltaic and light-emitting devices has become competitive to other state-of-the-art materials. Semiconductor NCs hold unique promise for near- and mid-infrared technologies, where very few semiconductor materials are available. On a purely fundamental side, new insights into NC growth, chemical transformations, and self-organization can be gained from rapidly progressing <I>in situ</I> characterization and direct imaging techniques. New phenomena are constantly being discovered in the photophysics of NCs and in the electronic properties of NC solids. In this Nano Focus, we review the state of the art in research on colloidal NCs focusing on the most recent works published in the last 2 years.</P><P><B>Graphic Abstract</B> <IMG SRC='http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/ancac3/2015/ancac3.2015.9.issue-2/nn506223h/production/images/medium/nn-2014-06223h_0020.gif'></P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼