RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Neurologic Factors in Female Sexual Function and Dysfunction

        Kazem M. Azadzoi,Mike B. Siroky 대한비뇨의학회 2010 Investigative and Clinical Urology Vol.51 No.7

        Sexual dysfunction affects both men and women, involving organic disorders, psychological problems, or both. Overall, the state of our knowledge is less advanced regarding female sexual physiology in comparison with male sexual function. Female sexual dysfunction has received little clinical and basic research attention and remains a largely untapped field in medicine. The epidemiology of female sexual dysfunction is poorly understood because relatively few studies have been done in community settings. In the United States, female sexual dysfunction has been estimated to affect 40% of women in the general population. Among the elderly, however, it has been reported that up to 87% of women complain of sexual dissatisfaction. Several studies have shown that the prevalence of female sexual arousal disorders correlates significantly with increasing age. These studies have shown that sexual arousal and frequency of coitus in the female decreases with increasing age. The pathophysiology of female sexual dysfunction appears more complex than that of males, involving multidimensional hormonal, neurological, vascular, psychological, and interpersonal aspects. Organic female sexual disorders may include a wide variety of vascular, neural, or neurovascular factors that lead to problems with libido, lubrication, and orgasm. However, the precise etiology and mechanistic pathways of age-related female sexual arousal disorders are yet to be determined. In the past two decades, some advances have been made in exploring the basic hemodynamics and neuroregulation of female sexual function and dysfunction in both animal models and in human studies. In this review, we summarize neural regulation of sexual function and neurological causes of sexual dysfunction in women.

      • KCI등재

        Progressive changes in detrusor function and micturition patterns with chroinc bladder ischemia

        Zuohui Zhao,Roya Azad,Jing-Hua Yang,Mike B. Siroky,Kazem M. Azadzoi 대한비뇨의학회 2016 Investigative and Clinical Urology Vol.57 No.4

        Purpose: Lower urinary tract symptoms (LUTS) are bothersome constellation of voiding symptoms in men and women as they age. Multiple factors and comorbidities are attributed to this problem but underlying mechanisms of nonobstructive nonneurogenic detrusor overactivity, detrusor underactivity and LUTS remain largely unknown. Our goal was to characterize detrusor function and voiding patterns in relation to muscarinic receptors expression, nerve fiber density, and neural ultrastructure in chronic bladder ischemia. Materials and Methods: Iliac artery atherosclerosis and bladder ischemia were produced in male Sprague-Dawley rats. At 8 and 16 weeks after ischemia, micturition patterns and cystometrograms were recorded in conscious rats then bladder blood flow and nonvoiding spontaneous contractions were measured under general anesthesia. Bladder tissues were processed for Western blotting, immunostaining, and transmission electron microscopy. Results: Bladder responses to ischemic insult depended on the duration of ischemia. Micturition patterns and cystometric changes at 8-week ischemia suggested detrusor overactivity, while voiding behavior and cystometrograms at 16-week ischemia implied abnormal detrusor function resembling underactivity. Upregulation of muscarinic M2 receptor was found after 8- and 16 weeks of ischemia. Downregulation of M3 and upregulation of M1 were detected at 16-week ischemia. Neural structural damage and marked neurodegeneration were found after 8 and 16 weeks of ischemia, respectively. Conclusions: Prolonged ischemia may be a mediating variable in progression of overactive bladder to dysfunctional patterns similar to detrusor underactivity. The mechanism appears to involve differential expression of M1, M2, and M3 receptors, neural structural injury, and progressive loss of nerve fibers.

      • KCI등재

        Progressive changes in detrusor function and micturition patterns with chroinc bladder ischemia

        Zuohui Zhao,Roya Azad,Jing-Hua Yang,Mike B. Siroky,Kazem M. Azadzoi 대한비뇨의학회 2016 Investigative and Clinical Urology Vol.57 No.5

        Purpose Lower urinary tract symptoms (LUTS) are bothersome constellation of voiding symptoms in men and women as they age. Multiple factors and comorbidities are attributed to this problem but underlying mechanisms of nonobstructive nonneurogenic detrusor overactivity, detrusor underactivity and LUTS remain largely unknown. Our goal was to characterize detrusor function and voiding patterns in relation to muscarinic receptors expression, nerve fiber density, and neural ultrastructure in chronic bladder ischemia. Materials and Methods Iliac artery atherosclerosis and bladder ischemia were produced in male Sprague-Dawley rats. At 8 and 16 weeks after ischemia, micturition patterns and cystometrograms were recorded in conscious rats then bladder blood flow and nonvoiding spontaneous contractions were measured under general anesthesia. Bladder tissues were processed for Western blotting, immunostaining, and transmission electron microscopy. Results Bladder responses to ischemic insult depended on the duration of ischemia. Micturition patterns and cystometric changes at 8-week ischemia suggested detrusor overactivity, while voiding behavior and cystometrograms at 16-week ischemia implied abnormal detrusor function resembling underactivity. Upregulation of muscarinic M2 receptor was found after 8- and 16 weeks of ischemia. Downregulation of M3 and upregulation of M1 were detected at 16-week ischemia. Neural structural damage and marked neurodegeneration were found after 8 and 16 weeks of ischemia, respectively. Conclusions Prolonged ischemia may be a mediating variable in progression of overactive bladder to dysfunctional patterns similar to detrusor underactivity. The mechanism appears to involve differential expression of M1, M2, and M3 receptors, neural structural injury, and progressive loss of nerve fibers.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼