RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Nitrogen removal and nitrogenous intermediate production of the heterotrophic membrane-aerated biofilm: A mathematical modeling investigation

        Mei Li,Chunyu Du,Meichao Lan,Zhiye Sun,Rukang Liu,Baoan Li 한국화학공학회 2020 Korean Journal of Chemical Engineering Vol.37 No.3

        A one-dimensional biofilm model was applied to illustrate the nitrogen conversion and removal within the heterogeneous biofilm attached on the gas-permeable membrane with different oxygen transfer coefficients: 7.5m/d, 1.5m/d and 0.3m/d. Integrating the ammonia-oxidizing bacteria-mediating hydroxylamine oxidization pathway during the autotrophic nitrification and the four-step denitrification pathway during the heterotrophic denitrification, the effects of the intra-membrane aeration pressure and the influent COD/N ratio were further quantitatively evaluated on the systematic performance of nitrogen conversion. Dynamic profiles of key nitrogenous intermediates were investigated to further analyze the treatment efficacy of the targeted biofilm system. It is inapplicable for membrane with oxygen transfer coefficient of 0.3m/d to sustain the biofilm due to the inferior treatment performance under higher influent organics and distinct nitrous oxide (N2O) production with elevated aeration pressures under lower influent organics. For the oxygen transfer coefficients of 7.5m/d and 1.5m/d, N2O production was detectable for the insufficient carbon source, indicating the significance of hydroxylamine oxidization. Short-cut nitrogen removal pathway could be feasible within the latter biofilm due to the nitrite accumulation, further reduced by supplementing the carbon source. Heterotrophic denitrification would contribute to the N2O production. Maintaining the biofilm thickness was conducive to short-cut nitrogen removal by regulating the substrate transfer and the biomass distribution along the biofilm. Besides the total nitrogen removal efficiency, the nitrite accumulation and N2O production were both decreased with the thickening biofilm. Inside the thinner biofilm, a short-cut pathway via nitrite might be the major pathway for nitrogen removal with distinguished N2O production, which could be mitigated through supplementing the carbon source.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼