RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Multi-Objective Optimization of Multistage Pump Balance Drum System Based on BP Neural Network and Genetic Algorithm

        Qian Chen,Luo Xin,Ling Zuguang,Yang Congxin 한국유체기계학회 2021 International journal of fluid machinery and syste Vol.14 No.1

        The axial force balancing capacity of a balance drum is a key factor affecting the life of multi-stage centrifugal pumps. In this paper, a double shell segmental multistage pump is taken as the research object. The hydraulic performance and axial force performance are set as the optimization objectives, and the performance data are obtained by numerical simulation with FLUENT software. The BP neural network is used to establish the prediction model of structural parameters of the balance system, hydraulic performance and residual axial force performance, and it is used as the adaptive value evaluation model of genetic algorithm to solve the optimal value in the sample space. The results show that the radial clearance of the balance drum and the balance tube orifice flowmeter, the axial width of the balance cavity are the significant factors affecting the hydraulic performance and axial force performance of the multistage pump. When the radial clearance of the balance drum is 0.1mm, the clearance of the orifice flowmeter is 1.95mm, and the axial width of the balance cavity is 55mm, the multi-stage pump has the best hydraulic performance and the smallest residual axial force. The vortex band in the balance cavity can increase the amount of the fluid spin and enhance the axial force balancing capacity of the balance drum. The greater the area occupied by the negative high-rotation fluid in the balance cavity, the stronger the ability of the balance drum to balance the axial force. The test results show that compared with the prototype multistage pump, at nominal flow rate, the head and efficiency of the optimized model are increased by 0.71% and 1.63% respectively, and the bearing temperature and vibration speed of the multi-stage pump are significantly reduced.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼