RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        The Role of Protein Phosphorylation in the Gustatory Cortex and Amygdala During Taste Learning

        Kobi Rosenblum,Chinnakkaruppan Adaikkan 한국뇌신경과학회 2012 Experimental Neurobiology Vol.21 No.2

        Protein phosphorylation and dephosphorylation form a major post-translation mechanism that enables a given cell to respond to ever-changing internal and external environments. Neurons, similarly to any other cells, use protein phosphorylation/dephosphorylation to maintain an internal homeostasis, but they also use it for updating the state of synaptic and intrinsic properties, following activation by neurotransmitters and growth factors. In the present review we focus on the roles of several families of kinases, phosphatases, and other synaptic-plasticity-related proteins, which activate membrane receptors and various intracellular signals to promote transcription, translation and protein degradation, and to regulate the appropriate cellular proteomes required for taste memory acquisition, consolidation and maintenance. Attention is especially focused on the protein phosphorylation state in two forebrain areas that are necessary for taste-memory learning and retrieval:the insular cortex and the amygdala.Th e various temporal phases of taste learning require the activation of appropriate waves of biochemical signals.Th ese include: extracellular signal regulated kinase I and II (ERKI/II) signal transduction pathways; Ca2+-dependent pathways;tyrosine kinase/phosphatase-dependent pathways; brain-derived neurotrophicfactor (BDNF)-dependent pathways; cAMP-responsive element bindingprotein (CREB); and translation-regulation factors, such as initiation and elongation factors,and the mammalian target of rapamycin (mTOR). Interestingly, coding of hedonic and aversive taste information in the forebrain requires activation of diff erent signal transduction pathways.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼