RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Electrochemical synthesis, characterization and application of a microstructure Cu3(BTC)2 metal organic framework for CO2 and CH4 separation

        Kasra Pirzadeh,Ali Asghar Ghoreyshi,Mostafa Rahimnejad,Maedeh Mohammadi 한국화학공학회 2018 Korean Journal of Chemical Engineering Vol.35 No.4

        The electrochemical route is a promising and environmentally friendly technique for fabrication of metal organic frameworks (MOFs) due to mild synthesis condition, short time for crystal growth and ease of scale up. A microstructure Cu3(BTC)2 MOF was synthesized through electrochemical path and successfully employed for CO2 and CH4 adsorption. Characterization and structural investigation of the MOF was carried out by XRD, FE-SEM, TGA, FTIR and BET analyses. The highest amount of carbon dioxide and methane sorption was 26.89 and 6.63 wt%, respectively, at 298K. The heat of adsorption for CO2 decreased monotonically, while an opposite trend was observed for CH4. The results also revealed that the selectivity of the developed MOF towards CO2 over CH4 enhanced with increase of pressure and composition of carbon dioxide component as predicted by the ideal adsorption solution theory (IAST). The regeneration of as-synthesized MOF was also studied in six consecutive cycles and no considerable reduction in CO2 adsorption capacity was observed.

      • KCI등재

        CO2 and N2 adsorption and separation using aminated UiO-66 and Cu3(BTC)2: A comparative study

        Kasra Pirzadeh,Kourosh Esfandiari,Ali Asghar Ghoreyshi,Mostafa Rahimnejad 한국화학공학회 2020 Korean Journal of Chemical Engineering Vol.37 No.3

        UiO-66 and Cu3(BTC)2, two well-known metal organic frameworks (MOFs), were aminated through insitu modification approach to improve CO2/N2 separation. UiO-66 was synthesized by solvothermal method, while Cu3(BTC)2 was synthesized with two electrochemical and solvothermal approaches for the sake of comparison. NH2- UiO-66 structure was optimized by evaluating the effect of key parameters, such as synthesis temperature, ligand to metal salt molar ratio, and modulator to metal salt molar ratio, on CO2/N2 selectivity. The effect of different weight percentage of 2-aminoterephthalic acid (NH2-BDC) on electrochemical synthesis of NH2-Cu3(BTC)2 was also investigated. Products were characterized by FTIR, BET, FESEM, XRD, and TGA analyses. Single CO2 adsorption experiment for NH2-UiO-66 showed higher capacity compared to UiO-66. However, for NH2-Cu3(BTC)2, an opposite trend was observed. The CO2 adsorption capacity for NH2-UiO-66 and NH2-Cu3(BTC)2 at 1 bar and 25 oC was 3.32 and 3.86 mmol/g, respectively. CO2/N2 selectivity with fixed concentration ratio (15/85 vol%) was also studied for aminated samples, and the values of 120 and 53 were determined for NH2-UiO-66 and NH2-Cu3(BTC)2, respectively. NH2-Cu3(BTC)2 showed the highest isosteric heat of adsorption among all samples (43 kJ/mol).

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼