RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        High temperature extensional rheology of commercially available polycarbonate mixed with flame retardant salts

        Samrat Sur,Manojkumar Chellamuthu,Jonathan Rothstein 한국유변학회 2020 Korea-Australia rheology journal Vol.32 No.1

        In this paper, we present a study of the dripping properties of polycarbonate (PC) modified with combinations of earth metal salts of inorganic sulfur, potassium perfluorobutane sulfonate (Rimar); non-halogenated flame retardant additives, potassium diphenyl sulfone-3-Sulfonate (KSS); and block co-polymerspolytetrafluoroethylene encapsulated with styrene acrylonitrile resin (T-SAN). Measurements of the extensional rheology of polycarbonate with different concentration of each flame retardant additive were performed using a custom-built high temperature Capillary Breakup Extensional Rheometer (CaBER) at temperatures up to T = 400oC. From these measurements, the evolution of the apparent transient extensional viscosity was monitored as a function of time and strain both in air and in an inert nitrogen environment. The evolution of extensional viscosity has been shown to be an excellent tool for predicting the dripping behavior of polymers exposed to heat and a valuable tool for understanding the mechanism of polymer degradation which is typically dominated by either crosslinking or charring. We show that extensional rheology measurements are significantly more sensitive to temperature-induced changes to the polymer microstructure than shear rheology measurements. We have also performed systematic concentration of specific flame retardant salts and through variation in extensional rheology and investigated the optimum concentration required to achieve a V0 rating. Finally, we will show that extensional rheology is a powerful method for predicting the effect of flame retardant modifiers and optimizing their use in new flame resistant materials.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼