RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • A Case Study on Methodology of Dose Calculation for the Embedded Pipe of Decommissioning NPP

        Jihwan Yu,Minchul Kim,Gi-lim Kim 한국방사성폐기물학회 2022 한국방사성폐기물학회 학술논문요약집 Vol.20 No.2

        A significant amount of piping is embedded in nuclear power plants (NPPs). In decommissioning these materials must be removed and cleaned. It can then be evaluated for radioactivity content below the release level. MARSSIM presents Derived Concentration Guideline Levels (DCGLs) that meet release guidelines. Calculating DCGL requires scenarios for the placement of embedded pipe and its long-term potential location or use. Some NPPs choose to keep the embedded pipes in the building. Because others will dismantle the building and dispose of the piping in-situ, determining the disposal option for embedded piping requires the use of measurement techniques with the sensitivity and accuracy necessary to measure the level of radioactive contamination of embedded piping and meet DCGL guidelines. The main measuring detectors used in NPPs are gas counters that are remotely controlled as they move along the inside of the pipe. The Geiger-Mueller (GM) detector is a detector commonly used in the nuclear field. Typically, this GM detector used 3-detectors that cover the entire perimeter of the pipe and are positioned at 120-degrees to each other. This is called a pipe crawler. It is very insensitive to gamma and X-ray, only measures beta-emitter and does not provide nuclide identification. The second method is a method using a high-resolution gamma-ray detector. Although not yet commercialized in many places, embedded piping is a scanning method. The technique only detects gamma-emitting nuclides, but some nuclides can be identified. Gamma-ray scanning identifies the average concentration per pipe length by the detector collimator. It is considerably longer than a pipe crawler. In addition, several techniques, including direct measurement of dose rate and radiochemical analysis after scraping sampling, are used and they must be used complementary to each other to determine the source term. Expensive sampling and radiochemical analysis can be reduced if these detectors are used to measure the radioactivity profile and to perform waste classification using scaling factor. In the actual Trojan NPP, a pipe crawler detector was used to survey the activity profile in a 26 foot of an embedded pipe. These results indicate that the geometric averaging of the factors and a dispersion values for each nuclide are constant within the accuracy factors. However, in order to accurately use the scaling factor in waste classification, it must have sample representativeness. Whether the sample through smear or scraping is representative of the radionuclide mixture in the pipe. Since the concentration varies according to the thickness of the deposit and depending on the location of the junction or bend, a lot of data are needed to confirm the reliability of the nuclide mixture. In this study, the reliability of the scaling factor, sampling representativeness and concentration measurement accuracy problems for waste classification in decommissioning NPP were evaluated and various techniques for measuring radioactive contamination on the inner surface of embedded pipes were surveyed and described. In addition, the advantages and limitations of detectors used to measure radioactivity concentrations in embedded piping are described. If this is used, it is expected that it will be helpful in determining the source term of the pipe embedded in the NPPs.

      • A Case Study on the Remediation of Embedded Piping of Trojan Decommissioning NPP

        Jihwan Yu,Hyung-woo Seo,Gi-lim Kim,Hyein Kim 한국방사성폐기물학회 2022 한국방사성폐기물학회 학술논문요약집 Vol.20 No.2

        Trojan Nuclear Power Plant (NPP), a four-loop PWR designed by Westinghouse and owned by Portland General Electric (PGE), reached its initial threshold in 1975 and was operational until November 1992. PGE received a Possession Only License from the NRC in May 1993. In 1995, limited decommissioning activities began at the Trojan, including the completion of a large components removal project to remove and dispose of four steam generators and pressurizers from the containment building. In April 1996, the NRC approved a plan to dismantling the Trojan NPP and began more aggressive component removal activities. At the end of 1998, part of the radioactive drainage system began to be removed, and embedded piping decontamination and survey activities began. Trojan NPP has more than 8,840 m of contaminated pipelines throughout the power block. Most of Trojan NPP’s contaminated embedded piping can generally be divided into four categories drainage piping, ventilation ducts, buried process piping, and other items. For the Trojan NPP, the complete removal of contaminated and embedded piping without damaging the building would have significantly increased costs due to the structural considerations of the building and the depth of the embedded pipe. Therefore, Trojan NPP has chosen to conduct the Embedded Pipe Remediation Project (EPRP) to clean and in situ survey of most of the embedded piping to meet the Final Site Survey (FSS) acceptance criteria, with much success. This study provides a discussion of EPRP activities in the Trojan NPP, including classification and characterization of affected piping, modeling of proposed contamination acceptance criteria, and evaluation of various decontamination and survey techniques. It describes the decontamination tools, techniques, and survey equipment and the condition of work and cost estimate costs used in these projects. To identify embedded piping and drains at the Trojan NPP, based on frequent site surveys, plan sketches showing an overview of system flow paths and connections and database were developed to identify drain inputs and headers. This approach effort has been a successful method of remediation and site survey activities. The developed database was a valuable asset to the EPRP and a Work Breakdown Structure (WBS) code was assigned to each drains and headers, allowing the embedded piping to be integrated into the decommissioning cost estimation software (Decon. Expert) and schedule, which aided in decommissioning cost estimation. Also, regular database updates made it easy to check the status of the decommissioning project data. The waste system drain at Trojan NPP was heavily contaminated. The goal of the remediation effort is to completely remove all removable contamination and to reduce the fixed contamination below the decided contamination acceptance criteria. Accordingly, Hydrolysis, Media blast, Chemical decontamination and Pipe removal were considered as remediation option. Trojan NPP’s drainage pipe decontamination option did not cause a significant corrosion layer inside the pipe and media blast was chosen as the main method for stainless steel pipe. In particular, the decommissioning owner decontaminates most of the embedded piping in-situ to meet the FSS acceptance criteria for economic feasibility in Trojan NPP. The remaining pipe was filled with grout to prevent leaching and spreading of contamination inside the pipe. In-situ decontamination and survey of most of these contaminated pipes are considered the most cost-effective option.

      • Analysis of the Final Status Survey (FSS) Procedure for Zion Nuclear Power Plant

        Jihwan Yu,Hyung-woo Seo,Gi-lim Kim 한국방사성폐기물학회 2023 한국방사성폐기물학회 학술논문요약집 Vol.21 No.2

        The purpose of this report is to provide a summary of the Phase 1 Final Status Survey (FSS) Final Report results and overall conclusions which conduct that the Zion Nuclear Power Station (ZNPS) facility and site meets the 25 mrem(0.25 mSv)per year release criterion as established in Nuclear Regulatory Commission Regulation (NRC) 10 CFR 20.1402 “Radiological Criteria for Unrestricted Use”. The FSS results provided assessment and summarize that any residual radioactivity results in a Total Effective Dose Equivalent (TEDE) to an Average Member of the Critical Group (AMCG) that does not exceed 25 mrem per year, and the residual radioactivity has been reduced to levels that are as low as reasonably achievable (ALARA). The release criterion is translated into site-specific Derived Concentration Guideline Levels (DCGLs) for assessment and summary. ZionSolutions, a decommissioning service provider, estimates that a total of four (4) FSS Final Reports be generated and submitted to the NRC during the decommissioning project. ZionSolutions established the Characterization/License Termination (C/LT) Group, within the Radiation Protection division, with sufficient management and technical resources to fulfill project objectives. The C/LT Group is responsible for the safe completion of all surveys related to characterization and final site closure. Approved site procedures and detailed Technical Support Documents (TSD) direct the FSS process to ensure consistent implementation and adherence to applicable requirements. The development and planning phase was initiated in 1999 by the “Zion Station Historical Site Assessment” (HSA) and the initiation of the characterization process for FSS. Develop the information necessary to support FSS design, including the development of Data Quality Objectives (DQOs) and survey instrument performance standards. DQOs are qualitative and quantitative statements derived from the DQOs process that clarify technical and quality objectives. The next step, FSS design utilizes the combination of traditional scanning surveys, systematic sampling protocols and investigative/judgmental methodologies to evaluate survey units relative to the applicable release criteria for open land sample plans. To aid in the development of an initial suite of potential radionuclides of concern for the decommissioning of ZNPS, the analytical results of representative characterization samples collected at the site were reviewed. At this FSS design step, the Radionuclides of Concern (ROC) are determined. As Co-60 and Cs-137 account for 99.5% of the analysis results of concrete core sampling data form ZNPS’s Containment Building and Auxiliary Building, they are determined and used as the basic ROC in the survey design. Additionally, site information is described and Historical Site Assessment (HSA) is performed. Data collected for the initial HSA will be used to establish the initial regional survey unit and corresponding MARSSIM classification. Next, an assessment of the collected data is performed using the DQO process, and a survey methodology is established by selecting a sampling method and measuring instrumentation. These result judgments provide guidance for C/LT Engineer to interpret findings using the Data Quality Assessment (DQA) process, which analysis Recorded data, Missing values, Deviation from established procedure, and Analysis flags. In conclusion, FSS is the process used to demonstrate that the ZNPS facility and site comply the radiological criteria for unrestricted use specified in 10 CFR.20. The purpose of FSS Sample Plan is to describe the methods to be used in planning, designing, conducting, and evaluating the FSS.

      • A Case Study on Clearance of Radioactive Material and Removal of Non-radioactive Material From the Decommissioning NPPs in Germany

        Jihwan Yu,Hyung-woo Seo,Gi-lim Kim 한국방사성폐기물학회 2023 한국방사성폐기물학회 학술논문요약집 Vol.21 No.1

        The operation and decommissioning of nuclear power plants (NPPs) creates waste in the process of handling radioactively contaminated material, which must be disposed of in a repository or can be recovered of in the same way as conventional waste in the course of handling radioactively contaminated materials. For buildings or sites of NPPs it also has to be decided under what conditions they can continue to be used for other, conventional purposes or demolished. This decision is referred to as “release from supervision under nuclear and radiation protection law” or “clearance” in short. The clearance levels applicable in Germany according to the Radiation Protection Ordinance have been defined such that a radiation dose (hereinafter referred to as “dose”) of 10 μSv per year is not exceeded. The vast majority of the materials resulting from the dismantling of a nuclear power plant (e.g. most of the massive concrete structures) are neither contaminated nor activated. Thus, there is no need to treat these materials as radioactive waste. Emplacement of uncontaminated masses which in Germany is essentially several million tonnes of building rubble in a repository would require additional construction of such facilities, which, in view of the negligible hazard potential, from the point of view of the Nuclear Waste Management Commission (ESK) is clearly to be rejected both economically and, in particular, ecologically. Alternative ways are increasingly discussed in public, such as the abandonment of buildings after gutting, i.e. refraining from demolition of the controlled area buildings of NPPs. Also, another proposal discussed in public, the landfilling or the long-term storage of cleared material at the site, does not offer any safety-related advantages either in the view of the ESK. If, after completion of all dismantling work, the building has been decontaminated such that the clearance levels for buildings are complied with further use of the building rubble resulting from demolition is harmless from a radiological point of view. For these reasons, Germany has deliberately decided to use clearance as an essential measure in the dismantling of NPPs. If it is intended to conventionally reuse or depose of virtually contaminant-free material from controlled areas, it must first undergo a clearance procedure. The prerequisites that must be fulfilled for clearance are regulated in the Radiation Protection Ordinance, which includes two basic clearance pathways: unrestricted and specific clearance. In the following, the basic process of clearance is briefly presented and illustrated for a better understanding. It comprises five steps. Step 1-Radiological characterization by sampling, Step 2-Dismantling of plant components in the controlled area, Step 3- Decontamination, Step 4-Decission measurements, Step 5-Clearacnce and further management. The entire clearance process is governed by a clearance notice and is carried out under the supervision of the competent authority under nuclear and radiation protection law or the independent authorized expert commissioned by it. The clearance pathways contained in the Radiation Protection Ordinance have proven themselves in practice. They permit safe and proper management of material from dismantling and release of the site from supervision under nuclear and radiation protection law. These German regulatory procedures should be taken into account and deregulation and removal should be used as appropriate and necessary tools in the process of decommissioning NPPs in order to return non-hazardous materials to the material cycle or for conventional disposal.

      • A Case Study on the Decontamination Reuse and Recycle of Contaminated Metal and Concrete for Decommissioning NPP

        Jihwan Yu,Hyung-woo Seo,Gi-lim Kim,Junki Baik 한국방사성폐기물학회 2022 한국방사성폐기물학회 학술논문요약집 Vol.20 No.1

        Decontamination and Dismantlement (D&D) are of great interest to owner of decommissioning as a large number of old nuclear facilities around the world are either shutdown or soon to be decommissioned. D&D are key steps in the decommissioning of nuclear power plants (NPPs). These activities typically generate a significant volume of radioactively contaminated waste. However, as much as 90% or more of this waste is lightly contaminated metal and concrete that could potentially be cleared for recycle or beneficial reuse, rather than disposed of as radioactive waste. The objective of this study is to provide reference for the application of current technologies to cost-effectively reduce the volume of radioactive waste associated with decommissioning, through review of experiences with decontamination of NPPs materials for unrestricted release, recycle or reuse, Also, highlights the importance of ongoing efforts to harmonize regulations and standards for radioactive waste management globally to enable reuse and recycle of valuable materials generated during decommissioning. The presented results in the balance of this study are organized to align with the sequence of operations for executing reuse or recycle of material for a decommissioning project. Concrete from buildings has most commonly been used for backfill of voids onsite, while metal has most commonly been melted or cleared into the conventional scrap recycling industry. Copper and lead, commonly found in cables and shielding, have high residual value and are thus highly desirable for recycling. Steel and stainless steel, while not inherently valuable, are present in many large components, such that decontamination for recycling can be cost-effective compared to disposal as radioactive waste. The decontamination techniques range from simple, inexpensive methods to complex, aggressive methods, each with advantages in various scenarios and limitations in others. Treatment often involves the sequential application of two or more decontamination techniques (e.g., chemical decontamination followed by abrasive blasting). Strategies for the characterization of materials for recycling include analyzing material in place before dismantlement, analyzing removed samples before or after dismantlement, and evaluating bulk material removed after dismantlement. If clearance and recycling are permitted, metals can be released to the conventional scrap recycling market, and concrete rubble can be used as backfill material onsite. In general, successful reuse/recycle projects require consideration of reuse/recycling objectives and implementation of associated planning activities early in the decommissioning process. The practicality of reuse/recycle depends on a number of high level (country and region-specific) and component level (material and case specific) factors. Since this information is useful to those responsible for planning or implementing the decommissioning of nuclear facilities, it is expected that it will be of great help especially to those in charge of decommissioning plan and managers in charge of decommissioning projects.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼