RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Experimental Technology of Long-term Cooling Effect for Hydride Reorientation Test of Non-irradiated Zircaloy-4 Cladding

        Hongryoul Oh,Daeho Kim,Donghak Kook 한국방사성폐기물학회 2022 한국방사성폐기물학회 학술논문요약집 Vol.20 No.1

        A long-term cooling effect on hydride reorientation of a cladding tube can affect the integrity of spent nuclear fuel transportation and long-term storage. In this study, experimental setup for investigating the degree of radial reorientation of hydrides in the circumferential direction during the long-term cooling was established. The experimental setup was designed to be simplified since the long-term evaluation requires a long term period such as 12, 18 and 24 months when the cladding tube specimen is gradually cooled down from 400°C to 100°C. For the test, hydrogen-charged specimens of 100 ppm, 200 ppm, and 500 ppm were prepared. The specimen was sealed with fixtures and check valve, and was pressurized up to 90 Mpa. To heat the specimen, a box-type furnace was used while the temperature of the specimen was measured from thermocouples attached to the specimen. After the heat treatment, the long-term cooling was performed by developing temperature control program to investigate several cooling rate conditions of the specimen. As a reference case, microstructure and brittle property of the hydrogen-charged specimens of 100 ppm, 200 ppm, and 500 ppm without the long-term cooling was observed. In the case of the hydrogen content, it was uniformly distributed in circumferential direction although it was non-uniform in the axial direction. In the case of the brittle property, a compression test was performed. For the future work, the microstructure and brittle property of the hydrogencharged specimens after the several long-cooling conditions were investigated. Then, the degree of radial reorientation of hydrides in the circumferential direction during the long-term cooling was studied.

      • Ring Tensile Test Material Properties Calibration Using Optimization Technique

        JaeYong Kim,HongRyoul Oh,SungHoon Park 한국방사성폐기물학회 2022 한국방사성폐기물학회 학술논문요약집 Vol.20 No.2

        A tensile test is performed to obtain the mechanical property data of the spent fuel cladding. In general, the elastic modulus, elongation, yield stress, tensile stress, etc. are obtained by axial tensile test of cladding attaching an extensometer. However, due to the limitation in the number of specimens for spent nuclear fuel that can be made, the ring tensile test (RTT) whose required length of the specimen is short is mainly performed. In the case of RTT, an extensometer or strain gauge cannot be attached because the gauge part of the specimen is formed around the cladding and is short. In addition, since a load is applied in the radial direction of the cladding, a curved portion of the circular cladding is spread out and becomes straight, and then the cladding is tensioned. For this reason, it is difficult to obtain the stress-strain curve directly from the RTT results. Isight, which is used to identify the optimization design parameters, was used to build an optimization process that minimizes the difference between the RTT and the analysis to estimate the material property. For this, the elastic modulus, plastic strain, and the radius of the RTT jig were taken as fixed variables. As variables, isotropic hardening data and plastic stress were taken. The objective function was taken as the minimization of the area difference of the load-displacement curve obtained from the tests and analysis, of the difference in the magnitude of the maximum reaction force, and of the difference in the location where the maximum reaction force occurred. Optimization workflow was configured in the following order. First, using the calculator component, plastic stress design variables were created. Next, ABAQUS was placed to perform analysis using design variables, and the reaction force or displacement was calculated. After that, the reaction force was calculated considering the 1/4 symmetry condition using the script component. After that, the data matching component performed quantitative comparison of test and analysis data. Finally, by utilizing the exploration component, the plastic stress design variable that minimizes the difference in the objective function was obtained by automatically changing six optimization algorithms. In this paper, the constructed optimization process and the obtained plastic stress by applying it to the SUS316 RTT results are briefly described. The established optimization process can be utilized to obtain mechanical property from the results of the cladding RTT of spent nuclear fuel or new material.

      • Collaborative R&D Work Between Korea and USA for Cooling Rate Effect of Hydride Reorientation

        Donghak Kook,Hongryoul Oh,Daeho Kim,Yanghyun Koo 한국방사성폐기물학회 2022 한국방사성폐기물학회 학술논문요약집 Vol.20 No.1

        Laboratory testing to simulate the drying of spent fuel is most often done using a cooling rate of approximately 5°C per hour because there are so many restricted test conditions like R&D project duration limit, budget and temporary electronic supply blackout at laboratory building. However, in a real dry cask storage system, the fuel cools much slower. Early data from KAERI on unirradiated, pre-hydrided cladding has shown that slower cooling may result in more brittle behavior than is currently observed based on these short-term tests. Given the potential safety and future handling implications of failed fuel, it is important to determine if the material properties of spent fuel cladding measured in these laboratory tests are the same as would be observed on fuel that has undergone a much longer, slower cooling, which may provide more time for hydrides to precipitate in the radial direction. KAERI and PNNL have started a collaborative I-NERI R&D project on this topic and each organization will perform tests on unirradiated & irradiated cladding under various hoop stress and cooling rate combinations. Scope of collaborative work is to evaluate long-term cooling (slow cooling rate) on hydride reorientation and subsequent material properties of cladding to determine if past and current research activities on spent nuclear fuel are bounding. The results will be used to direct future testing and help predict cladding performance over a wide range of burnups during extended storage and transportation.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼