RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Experimental study of bubbly swirling flow in a vertical tube using ultrasonic velocity profiler (UVP) and wire mesh sensor (WMS)

        Ari Hamdani,Tomonori Ihara,Nobuyoshi Tsuzuki,Hiroshige Kikura 대한기계학회 2016 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.30 No.9

        Two-phase air-water bubbly swirling flow through a pipe is a complex turbulent flow and its prediction is still challenging. The present paper describes the experimental investigation of the air-water bubbly swirling flow in vertical co-current flow. Swirling flow is induced by a twisted tape in a 20 mm inner diameter pipe. The flow is investigated using Ultrasonic velocity profiler (UVP), which allows the measurement of liquid and gas velocities simultaneously. Furthermore, simultaneous measurement of void fraction is performed using Wire mesh sensor (WMS). The experimental results reveal that swirling flow has significant impact on bubbles’ distribution. In low liquid flow rate, the average bubble velocity is fairly uniform along the radial position and void fraction increases in the near wall region. However, increasing liquid flow rate at constant gas flow rate leads to increase in void fraction in the core region, this is mainly due to drift velocity which is affected by centrifugal force. Experimental findings and parametric trends based on the effects of swirling flow are summarized and discussed.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼