RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Optimizing location of particle damper using principles of gas-solid flow

        Xiaofei Lei,Chengjun Wu,Peng Chen,Hengliang Wu,Jianyong Wang 대한기계학회 2019 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.33 No.6

        Particle damping is a passive control technology with strong nonlinearity whose damping effect is relative to the vibration intensity where a particle damper is installed. Then, seeking the optimal installing location of the particle damper to improve the damping effect and vibration control performance is an important research project. To this problem, bound optimization by quadratic approximation (BOBYQA) was employed to discuss the optimal location of a particle damper at the both fixed end plate. For theoretically evaluating the damping effect and invoking it into BOBYQA, the principle of gas-solid flow was used to study the damping effect and establish the theoretical model of particle damping. Further, the estimation precision of the mathematical model was verified by experiment; the results indicate that the proposed mathematical model can more accurately predict the dynamic response of a particle damper installed at both fixed end plate. Therefore, a mathematical model was employed to discuss the optimal position of the particle damper for minimizing maximum amplitude (MMA). The results indicate that particle damper should be installed at the model top close to the monitoring point; if there are two resonances whose amplitudes are equivalent or approximate, the particle damper should be installed at the junction of these model tops.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼