RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Detection of surface anomalies through fractal analysis and their relation to morphotectonics (High Zagros belt, Iran)

        Mahnaz Shiran,Mohammad Ali Zangeneh Asadi,Paolo Mozzi,Hamed Adab,Abolghasem Amirahmadi 한국지질과학협의회 2020 Geosciences Journal Vol.24 No.5

        Fractal geometry is considered as a new method for quantitative analysis and explanation of surface complexities and roughness in self-similar or self-affine landforms. In the present study, the surface fractal dimensions were investigated by a cellular model by covering divider method and remote sensing data, in a complex morphotectonic region in terms of tectonic, geological, and geomorphological structures along the margin of the High Zagros Belt. Results of this study indicated that surface anomalies can be detected by cellular fractal model due to variations at the boundary of lithological units and structural zones, and along faults that can change the characters of the fractal dimension of landforms. Investigation of wavelet analyses on two profiles of study area shows that the amplitude and frequency of the fractal dimension is related to lithological and structural zones boundaries, and to the presence of faults. In this study, the lowest fractal dimension is associated with the integrated units of Mesozoic orbitolina limestone on the border of the two structural zones of Sanandaj-Sirjan and High Zagros belt. However, the presence of friable and erodible Quaternary formations increases the fractal dimension. There is an inverse relationship between the fractal dimension and elevation and Terrain Ruggedness Index, indicating that mountains have lower fractal dimensions than lowlands. The results of the present study show that fractal dimensional changes in topographically complex zones depend on the interaction of a set of lithological, tectonic, and geomorphological factors, and allow for a systematic quantitative analysis of landforms.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼