RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Preparation and characterization of a porous silicate material from silica fume

        Yinmin Zhang,Haiping Qi,Yaqiong Li,Yongfeng Zhang,Junmin Sun 한국화학공학회 2017 Korean Journal of Chemical Engineering Vol.34 No.12

        A porous silicate material derived from silica fume was successfully prepared and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared (FT-IR) spectroscopy, Thermogravimetry and Differential thermal gravity (TG-DTG), N2 adsorption and desorption isotherms, and scanning electron microscopy (SEM). Raw silica fume was analyzed by XRD, FT-IR and SEM. The analysis results of silica fume indicated that SiO2 in silica fume is mainly determined as amorphous state, and that the particles of raw silica fume exhibited characteristic spherical structure with a diameter of from 50 nm to 200 nm. The preparation of the porous silicate material involved two steps. The first step was the extraction of the SiO3 2− leachate from raw silica fume. The maximum value of SiO3 2− extraction yield was obtained under the following conditions: reaction temperature of 120 oC, reaction time of 120 min, NaOH concentration of 15%, and alkali to SiO2 molar ratio of 2. The second step was the preparation of the porous silicate material though the reaction of SiO3 2− leachate and Ca(OH)2 suspension liquid. The optimum preparation conditions were as follows: preparation temperature of 90 oC, preparation time of 1.5 h, Si/Ca molar ratio of 1 : 1, and stirring rate of 100 r/min. The BET surface area and pore size of the porous silicate material were 220.7m2·g−1 and 8.55 cm3/g, respectively. The porous silicate material presented an amorphous and unordered structure. The spectroscopic results indicated that the porous silicate material was mainly composed of Si, Ca, O, C, and Na, in the form of Ca2+, SiO3 2−, CO3 2− and Na+ ions, respectively, which agreed with the XRD, TG-DSC, and FT-IR data. The N2 adsorption-desorption isotherm mode indicates that the porous silicate material belonged to a typical mesoporous material. The porous silicate material presented efficiency for the removal of formaldehyde: it showed a formaldehyde adsorption capacity of 8.01mg/g for 140 min at 25 oC.

      • Real-Space Imaging of the Atomic Structure of Organic–Inorganic Perovskite

        Ohmann, Robin,Ono, Luis K.,Kim, Hui-Seon,Lin, Haiping,Lee, Michael V.,Li, Youyong,Park, Nam-Gyu,Qi, Yabing American Chemical Society 2015 JOURNAL OF THE AMERICAN CHEMICAL SOCIETY - Vol.137 No.51

        <P>Organic–inorganic perovskite is a promising class of materials for photovoltaic applications and light emitting diodes. However, so far commercialization is still impeded by several drawbacks. Atomic-scale effects have been suggested to be possible causes, but an unequivocal experimental view at the atomic level is missing. Here, we present a low-temperature scanning tunneling microscopy study of single crystal methylammonium lead bromide CH<SUB>3</SUB>NH<SUB>3</SUB>PbBr<SUB>3</SUB>. Topographic images of the in situ cleaved perovskite surface reveal the real-space atomic structure. Compared to the bulk we observe modified arrangements of atoms and molecules on the surface. With the support of density functional theory we explain these by surface reconstruction and a substantial interplay of the orientation of the polar organic cations (CH<SUB>3</SUB>NH<SUB>3</SUB>)<SUP>+</SUP> with the position of the hosting anions. This leads to structurally and electronically distinct domains with ferroelectric and antiferroelectric character. We further demonstrate local probing of defects, which may also impact device performance.</P><P><B>Graphic Abstract</B> <IMG SRC='http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/2015/jacsat.2015.137.issue-51/jacs.5b08227/production/images/medium/ja-2015-08227g_0006.gif'></P><P><A href='http://pubs.acs.org/doi/suppl/10.1021/ja5b08227'>ACS Electronic Supporting Info</A></P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼