RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        A mathematical model for smart functionally graded beam integrated with shape memory alloy actuators

        H. Sepiani,F. Ebrahimi,H. Karimipour 대한기계학회 2009 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.23 No.12

        This paper presents a theoretical study of the thermally driven behavior of a shape memory alloy (SMA)/FGM actuator under arbitrary loading and boundary conditions by developing an integrated mathematical model. The model studied is established on the geometric parameters of the three-dimensional laminated composite box beam as an actuator that consists of a functionally graded core integrated with SMA actuator layers with a uniform rectangular cross section. The constitutive equation and linear phase transformation kinetics relations of SMA layers based on Tanaka and Nagaki model are coupled with the governing equation of the actuator to predict the stress history and to model the thermo-mechanical behavior of the smart shape memory alloy/FGM beam. Based on the classical laminated beam theory, the explicit solution to the structural response of the structure, including axial and lateral deflections of the structure, is investigated. As an example, a cantilever box beam subjected to a transverse concentrated load is solved numerically. It is found that the changes in the actuator's responses during the phase transformation due to the strain recovery are significant.

      • KCI등재

        Transverse shear and rotary inertia effects on the stability analysis of functionally graded shells under combined static and periodic axial loadings

        F. Ebrahimi,H. Sepiani 대한기계학회 2010 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.24 No.12

        The effect of transverse shear and rotary inertias on the dynamic stability of functionally graded cylindrical shells subjected to combined static and periodic axial forces is investigated in this paper. Material properties of functionally graded cylindrical shells are considered temperature-dependent and are graded in the thickness direction according to a power-law distribution in terms of the volume fractions of the constituents. Numerical results for silicon nitride-nickel cylindrical shells are presented based on two different methods: the first-order shear deformation theory (FSDT) which considers the transverse shear strains and the rotary inertias, and the classical shell theory (CST). The results obtained show that the effect of transverse shear and rotary inertias on the dynamic stability of functionally graded cylindrical shells subjected to combined static and periodic axial forces is dependent on the shell’s material composition, environmental temperature, amplitude of static load, deformation mode, and the shell’s geometry parameters.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼