RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Position-pose Control of a Pneumatic 3-UPU Robot Based on Immersion and Invariance

        Yu Liu,Xiaodong Wang,Guoxin Zhao,Shuchao Ma 제어·로봇·시스템학회 2022 International Journal of Control, Automation, and Vol.20 No.3

        For pneumatic servo systems, the piston movement, time-varying parameters, and modeling uncertainties make high-precision position control difficult. A third-order mathematical model was established for a pneumatic 3-UPU (universal-prismatic-universal) robot system to provide a roughly accurate reference model for the control algorithm. Subsequently, a high-precision position-pose control algorithm based on immersion and invariance (I&I) was developed, where the leakage flow in the cylinder was incorporated as an interference term in the state equation, and the state equation was expanded. In addition, through a reasonable design of the compensation function and adaptive rate, the invariance and attraction of the error flow pattern were realized. The disturbance error was estimated in real time based on the adaptive law. Through the sliding surface, the control rate was designed, and the position-pose control of the robot was realized. The results showed that the I&I controller exhibits a strong robustness with a steady-state control accuracy of approximately 0.3 mm and a dynamic (0.2 Hz) tracking mean-squared error less than 6.4 mm.

      • KCI등재

        The Improvement of China’s Nuclear Safety Supervision Technical Support Ability

        Han Wu,Guoxin Yu,Xiangyang Zheng,Keyan Teng 한국방사성폐기물학회 2022 방사성폐기물학회지 Vol.20 No.4

        The International Atomic Energy Agency (IAEA) entails independent decision-making for the safety supervision of civil nuclear facilities. To evaluate and review the safety of nuclear facilities, the national regulatory body usually consults independent institutions or external committees. Technical Support Organizations (TSOs) include national laboratories, research institutions, and consulting organizations. Support from professional organizations in other countries may also be required occasionally. Most of the world’s major nuclear power countries adopt an independent nuclear safety supervision model. Accordingly, China has continuously improved upon the construction of such a system by establishing the National Nuclear Safety Administration (NNSA) as the decision-making department for nuclear and radiation safety supervision, six regional safety supervision stations, the Nuclear and Radiation Safety Center (NSC), a nuclear safety expert committee, and the National Nuclear and Radiation Safety Supervision Technology R&D Base, which serves as the test, verification, and R&D platform for providing consultation and technical support. An R&D system, however, remains to be formed. Future endeavors must focus on improving the technical support capacity of these systems. As an enhancement from institutional independence to capability independence is necessary for ensuring the independence of China’s nuclear safety regulatory institution, its regulatory capacity must be improved in the future.

      • SCIESCOPUSKCI등재

        Fix-frequency robust power model predictive control method for three-phase PWM rectifiers under unbalanced grid conditions

        Guo, Xin,Xiao, Min,Gao, Yu-er,Wang, Qingyu,Wan, Yihao The Korean Institute of Power Electronics 2020 JOURNAL OF POWER ELECTRONICS Vol.20 No.5

        Under unbalanced grid conditions, the controller design of a three-phase pulse width modulation (PWM) rectifier is based on an instantaneous power model. By calculating the current references of the converter according to the instantaneous power model, traditional voltage-oriented control (VOC) methods realize the positive-sequence and negative-sequence active and reactive current control of the converter separately using the proportional-integral (PI) controller. However, due to the inner current loop control structure of the traditional VOC method, it is impossible to realize the regulation of all six power components in a common instantaneous power model under an unbalanced grid. Meanwhile, the control performance of the traditional VOC method with a PI controller is degraded under the circuit parameters uncertainty condition. In this paper, a fixed switching frequency robust power model predictive control method (FRP-MPC) is proposed for three-phase PWM rectifiers under the unbalanced grid condition. The proposed control strategy has a number of advantages. An improved instantaneous power model is used for the fixed switching frequency model predictive controller design under the unbalanced grid condition, which has less power variables than the common instantaneous power model. The robustness of the MPC controller is improved by adding a robust item into the predictive model under circuit parameters uncertainty. Simulation and experiment results verify the effectiveness of the proposed control method.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼