RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Kinematics of filament stretching in dilute and concentrated polymer solutions

        McKinley, Gareth H.,Brauner, Octavia,Yao, Minwu The Korean Society of Rheology 2001 Korea-Australia rheology journal Vol.13 No.1

        The development of filament stretching extensional rheometers over the past decade has enabled the systematic measurement of the transient extensional stress growth in dilute and semi-dilute polymer solutions. The strain-hardening in the extensional viscosity of dilute solutions overwhelms the perturbative effects of capillarity, inertia & gravity and the kinematics of the extensional deformation become increasingly homogeneous at large strains. This permits the development of a robust open-loop control algorithm for rapidly realizing a deformation with constant stretch history that is desired for extensional rheometry. For entangled fluids such as concentrated solutions and melts the situation is less well defined since the material functions are governed by the molecular weight between entanglements, and the fluids therefore show much less pronounced strain-hardening in transient elongation. We use experiments with semi-dilute/entangled and concentrated/entangled monodisperse polystyrene solutions coupled with time-dependent numerical computations using nonlinear viscoelastic constitutive equations such as the Giesekus model in order to show that an open-loop control strategy is still viable for such fluids. Multiple iterations using a successive substitution may be necessary, however, in order to obtain the true transient extensional viscosity material function. At large strains and high extension rates the extension of fluid filaments in both dilute and concentrated polymer solutions is limited by the onset of purely elastic instabilities which result in necking or peeling of the elongating column. The mode of instability is demonstrated to be a sensitive function of the magnitude of the strain-hardening in the fluid sample. In entangled solutions of linear polymers the observed transition from necking instability to peeling instability observed at high strain rates (of order of the reciprocal of the Rouse time for the fluid) is directly connected to the cross-over from a reptative mechanism of tube orientation to one of chain extension.

      • KCI등재후보

        Capillary breakup extensional rheometry of a wormlike micellar solution

        Nahn Ju Kim,Christopher J. Pipe,Kyung Hyun Ahn,Seung Jong Lee,Gareth H. McKinley 한국유변학회 2010 Korea-Australia rheology journal Vol.22 No.1

        The behaviour of a cetylpyridinium chloride/sodium salicylate wormlike micellar system undergoing capillary breakup is investigated experimentally. The transient elongational flow induced in a thinning thread is used to study the apparent viscosity and effective relaxation time of the micellar network in extension. The sensitivity of the material response to initial conditions and deformation history is explored by varying the endplate diameter of the capillary breakup rheometer and the initial step strain imposed on the sample. Local regimes in which the extensional viscosity shows constant (Newtonian), weak extensional thinning and strong extensional thickening are observed depending on the accumulated strain and strain rate. For this concentrated micellar network, the relaxation time determined in extension was found to be independent of the initial configuration and in close agreement with the value measured in shear flow.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼