RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Explore the possible advantages of using thorium based fuel in a pressurized water reactor (PWR) reactor-Part 1: Neutronic Analysis

        A. Abdelghafar Galahom,Mohamed Y.M. Mohsen,Naima Amrani 한국원자력학회 2022 Nuclear Engineering and Technology Vol.54 No.1

        This study discusses the effect of using 232Th instead of 238U on the neutronic characteristics and the main operating parameters of the pressurized water reactor (PWR). MCNPX version 2.7 was used to compare the neutronic characteristics of UO2 with (Th, 235U)O2 and (Th, 233U) O2. Firstly, the infinity multiplication factor (Kinf), thermal neutron flux, and power distribution have been studied for the investigated fuel types. Secondly, the effect of Gd2O3 and Er2O3 on the Kinf and on the radial thermal neutron flux and thermal power has been investigated to distinguish which of them is more suitable than the other in reactivity management. Thirdly, to illustrate the effectiveness of 232Th in decreasing the inventory of both the actinides and non-actinides, the concentration of plutonium (Pu) isotopes and minor actinides (MAs) has been simulated with the fuel burnup. Besides, due to their large thermal neutron absorption cross-section, the concentrations of 135Xe, 149Sm, and 151Sm with the fuel burnup have been investigated. Finally, the main safety parameters such as the reactivity worth of the control rods (ρCR), the effective delayed neutron fraction βeff, and the Doppler reactivity coefficient (DRC) were calculated to determine to which extent these fuel types achieve the acceptable limits.

      • KCI등재

        Searching for the viability of using thorium-based accident-tolerant fuel for VVER-1200

        Mohsen Mohamed Y.M.,Abdel-Rahman Mohamed A.E.,Omar Ahmed,Alnassar Nassar,Galahom A. Abdelghafar 한국원자력학회 2024 Nuclear Engineering and Technology Vol.56 No.1

        This study explores the feasibility of employing (U, Th)-based accident tolerant fuels (ATFs), specifically (0.8UO2, 0.2ThO2), (0.8UN, 0.2ThN), and (0.8UC, 0.2ThC). The investigation assesses the overall performance of these proposed fuel materials in comparison to the conventional UO2, focusing on deep neutronic and thermal-hydraulic (Th) analyses. Neutronic analysis utilized the MCNPX code, while COMSOL Multiphysics was employed for thermal-hydraulic analysis. The primary objective of this research is to overcome the limitations associated with traditional UO2 fuel by exploring alternative fuel materials that offer advantages in terms of abundance and potential improvements in performance and safety. Given the limited abundance of UO2, long-term sustainable nuclear energy production faces challenges. From a neutronic standpoint, the U–Th based fuels demonstrated remarkable fuel cycle lengths, except (0.8UN, 0.2ThN), which exhibited the minimum fuel cycle length and, consequently, the lowest fuel burn-up. Regarding thermal-hydraulic performance, (0.8UN, 0.2ThN) exhibited outstanding performance with significant margins against fuel melting compared to the other materials. Overall, when considering the integrated performance, the most favourable results were obtained with the use of the (0.8UC, 0.2ThC) fuel configurations. This study contributes valuable insights into the potential benefits of (U, Th)- based ATFs as a promising avenue for enhanced nuclear fuel performance.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼