RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Fibroblast growth factor receptor influences primary cilium length through an interaction with intestinal cell kinase

        Kunova Bosakova, Michaela,Nita, Alexandru,Gregor, Tomas,Varecha, Miroslav,Gudernova, Iva,Fafilek, Bohumil,Barta, Tomas,Basheer, Neha,Abraham, Sara P.,Balek, Lukas,Tomanova, Marketa,Fialova Kucerova, J National Academy of Sciences 2019 PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF Vol.116 No.10

        <▼1><P><B>Significance</B></P><P>A properly functioning primary cilium is prerequisite for both normal development and aging of all ciliated organisms, including humans. In vertebrates, the signaling of Hedgehog family morphogens depends entirely on primary cilium. Recently, we reported that fibroblast growth factors (FGF) signaling interacts with that of Hedgehog, and that this is a consequence of FGF regulating length of the cilium and speed of processes that happen therein. In this report, we provide a molecular mechanism of such interaction, identifying intestinal cell kinase as a mediator of the FGF-induced changes in the ciliary morphology and function. This expands our understanding how FGF signaling regulates intracellular processes, and how aberrant FGF signaling contributes to diseases, such as achondroplasia and cancer.</P></▼1><▼2><P>Vertebrate primary cilium is a Hedgehog signaling center but the extent of its involvement in other signaling systems is less well understood. This report delineates a mechanism by which fibroblast growth factor (FGF) controls primary cilia. Employing proteomic approaches to characterize proteins associated with the FGF-receptor, FGFR3, we identified the serine/threonine kinase intestinal cell kinase (ICK) as an FGFR interactor. ICK is involved in ciliogenesis and participates in control of ciliary length. FGF signaling partially abolished ICK’s kinase activity, through FGFR-mediated ICK phosphorylation at conserved residue Tyr15, which interfered with optimal ATP binding. Activation of the FGF signaling pathway affected both primary cilia length and function in a manner consistent with cilia effects caused by inhibition of ICK activity. Moreover, knockdown and knockout of ICK rescued the FGF-mediated effect on cilia. We provide conclusive evidence that FGF signaling controls cilia via interaction with ICK.</P></▼2>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼