RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Extraction of copper from copper slag: Mineralogical insights, physical beneficiation and bioleaching studies

        Sandeep Panda,Srabani Mishra,Danda Srinivas Rao,Nilotpala Pradhan,Umaballava Mohapatra,Shivakumar Angadi,Barada Kanta Mishra 한국화학공학회 2015 Korean Journal of Chemical Engineering Vol.32 No.4

        Copper slag was subjected to in-depth mineralogical characterization by integrated instrumental techniquesand evaluated for the efficacy of physical beneficiation and mixed meso-acidophilic bioleaching tests towardsrecovery of copper. Point-to-point mineral chemistry of the copper slag is discussed in detail to give better insight intothe association of copper in slag. Characterization studies of the representative sample revealed the presence of fayaliteand magnetite along with metallic copper disseminated within the iron and silicate phases. Physical beneficiation of thefeed slag (~0.6% Cu) in a 2 L working volume flotation cell using sodium isopropyl xanthate resulted in Cu beneficiationup to 2-4% and final recovery within 42-46%. On the other hand, a mixed meso-acidophilic bacterial consortiumcomprised of a group of iron and/or sulfur oxidizing bacteria resulted in enhanced recovery of Cu (~92-96%) from theslag sample. SEM characterization of the bioleached slag residue also showed massive coagulated texture with severeweathered structures. FE-SEM elemental mapping with EDS analysis indicated that the bioleached residues were devoidof copper.

      • KCI등재

        Studies on removal of lead ions from aqueous solutions using iron ore slimes as adsorbent

        Laxmipriya Panda,Bisweswar Das,Danda Srinivas Rao 한국화학공학회 2011 Korean Journal of Chemical Engineering Vol.28 No.10

        Iron ore slimes, a waste material generated during iron ore mining have been employed for the removal of lead ions from aqueous solutions by a batch adsorption technique. The slime sample contains 45.8% Fe, 13.6% SiO_2,and 13.9% Al_2O_3. It is characterized by X-ray diffraction (XRD) and optical microscopy to determine the presence of different phases such as hematite, goethite, limonite, quartz and kaolinite. It is assumed that the adsorption of lead ions is mainly due to the presence of pores and cavities in goethite mineral. The FTIR studies showed the presence of Si-OH and Fe-OH sites responsible for adsorption. Furthermore, the point of zero charge (pzc) of iron ore slime is shifted from 6.2 to 5.8 due to the adsorption of lead ions. Batch adsorption experiments have been conducted to study the sorption behavior of lead ions on iron ore slime. The effects of agitation time, concentration of lead ions, adsorbent doses, solution pH, other metal ions and temperature on the amount of lead ions adsorbed have been investigated. Lead ion adsorption is fast, and equilibrium could be achieved within 15 minutes of time. The adsorption increased with increase in temperature suggesting an endothermic adsorption. Under the conditions, it is possible to remove 95%lead from an aqueous solution bearing ~20 mg/l at pH~5.1. The equilibrium adsorption isotherm data fitted very well to both Langmuir and Freundlich adsorption models.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼