RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Investigating energy partitioning during photosynthesis using an expanded quantum yield convention

        Ahn, T.K.,Avenson, T.J.,Peers, G.,Li, Z.,Dall'Osto, L.,Bassi, R.,Niyogi, K.K.,Fleming, G.R. Elsevier Science Publishers [etc.] 2009 Chemical physics Vol.357 No.1

        In higher plants, regulation of excess absorbed light is essential for their survival and fitness, as it enables avoidance of a build up of singlet oxygen and other reactive oxygen species. Regulation processes (known as non-photochemical quenching; NPQ) can be monitored by steady-state fluorescence on intact plant leaves. Pulse amplitude modulated (PAM) measurements of chlorophyll a fluorescence have been used for over 20 years to evaluate the amount of NPQ and photochemistry (PC). Recently, a quantum yield representation of NPQ (Φ<SUB>NPQ</SUB>), which incorporates a variable fraction of open reaction centers, was proposed by Hendrickson et al. [L. Hendrickson, R.T. Furbank, W.S. Chow, Photosynth. Res. 82 (2004) 73]. In this work we extend the quantum yield approach to describe the yields of reversible energy-dependent quenching (Φ<SUB>qE</SUB>), state transitions to balance PC between photosystems II and I (Φ<SUB>qT</SUB>), and photoinhibition quenching associated with damaged reaction centers (Φ<SUB>qI</SUB>). We showed the additivity of the various quantum yield components of NPQ through experiments on wild-type and npq1 strains of Arabidopsis thaliana. The quantum yield approach enables comparison of Φ<SUB>qE</SUB> with data from a variety of techniques used to investigate the mechanism of qE. We showed that Φ<SUB>qE</SUB> for a series of A. thaliana genotypes scales linearly with the magnitude of zeaxanthin cation formation, suggesting that charge-transfer quenching is largely responsible for qE in plants.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼