RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Single and binary adsorption of dyes from aqueous solutions using functionalized microcrystalline cellulose from cotton fiber

        Hongjuan Bai,Junhang Chen,Xiangyu Zhou,Chengzhi Hu 한국화학공학회 2020 Korean Journal of Chemical Engineering Vol.37 No.11

        Simultaneous removal of dyes in the effluents of printing and dyeing industries is challenging, and the mechanism of the co-adsorption of dyes is still unclear. In this context, a novel adsorbent based on microcrystalline cellulose from cotton fiber through a simplified chemical modification process was prepared. Methylene blue (MB) and neutral red (NR) were selected to investigate their adsorption/co-adsorption on such functionalized microcrystalline cellulose. The experimental adsorption results indicated that the adsorption quantity of both dyes was similar for the single solute. The kinetics of adsorption processes could be better described with the pseudo-second order models for both single and binary dye solutes. The results of the co-adsorption suggested that the extended Langmuir model could well predict equilibrium. The maximum adsorption capacity of MB and NR for the single systems was 115.2 and 83.2mg/g, respectively. Moreover, an antagonistic effect could be found in the binary dye solute. The obtained results revealed that the co-adsorption of dyes might be driven by hydrogen bonding, - stacking interaction as well as electrostatic interaction.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼