RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Non-obstructive particle damping using principles of gas-solid flows

        Xiaofei Lei,Chengjun Wu 대한기계학회 2017 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.31 No.3

        Non-obstructive particle damping is a type of nonlinear damping related to the velocity amplitude of a vibrating structure. Many scholars have spent considerable time researching the damping and energy dissipation mechanism due to interparticle collision and friction, and they achieved corresponding results by using the principles of gas-solid flows and discrete element method. However, the damping mechanism due to kinetic dissipation between particles and gas has been entirely ignored. In this paper, a mathematical evaluation of the damping mechanisms due to kinetic dissipation is performed by using the principles of gas-solid flows. For systematic research into the application of non-obstructive particle damping technology in engineering practice, the improved model is perfectly embedded into finite element software by using co-simulation technology, in which MATLAB invokes a COMSOL file and controls the calculation process. A frequency analysis of the experiment verifies that the prediction accuracy of the improved model is obviously increased. Moreover, energy dissipation was explored by using the principles of gas-solid flows. Results indicate that particle damping technology can effectively control the structure vibration at a higher-order frequency. However, the energy dissipation mechanism takes effect at a lowerorder frequency.

      • KCI등재

        Optimizing location of particle damper using principles of gas-solid flow

        Xiaofei Lei,Chengjun Wu,Peng Chen,Hengliang Wu,Jianyong Wang 대한기계학회 2019 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.33 No.6

        Particle damping is a passive control technology with strong nonlinearity whose damping effect is relative to the vibration intensity where a particle damper is installed. Then, seeking the optimal installing location of the particle damper to improve the damping effect and vibration control performance is an important research project. To this problem, bound optimization by quadratic approximation (BOBYQA) was employed to discuss the optimal location of a particle damper at the both fixed end plate. For theoretically evaluating the damping effect and invoking it into BOBYQA, the principle of gas-solid flow was used to study the damping effect and establish the theoretical model of particle damping. Further, the estimation precision of the mathematical model was verified by experiment; the results indicate that the proposed mathematical model can more accurately predict the dynamic response of a particle damper installed at both fixed end plate. Therefore, a mathematical model was employed to discuss the optimal position of the particle damper for minimizing maximum amplitude (MMA). The results indicate that particle damper should be installed at the model top close to the monitoring point; if there are two resonances whose amplitudes are equivalent or approximate, the particle damper should be installed at the junction of these model tops.

      • KCI등재

        A novel prediction method of vibration and acoustic radiation for rectangular plate with particle dampers

        Dongqiang Wang,Chengjun Wu 대한기계학회 2016 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.30 No.3

        Particle damping technology is widely used in mechanical and structural systems or civil engineering to reduce vibration and suppress noise as a result of its high efficiency, simplicity and easy implementation, low cost, and energy-saving characteristic without the need for any auxiliary power equipment. Research on particle damping theory has focused on the vibration response of the particle damping structure, but the acoustic radiation of the particle damping structure is rarely investigated. Therefore, a feasible modeling method to predict the vibration response and acoustic radiation of the particle damping structure is desirable to satisfy the actual requirements in industrial practice. In this paper, a novel simulation method based on multiphase flow theory of gas particle by COMSOL multiphysics is developed to study the vibration and acoustic radiation characteristics of a cantilever rectangular plate with Particle dampers (PDs). The frequency response functions and scattered far-field sound pressure level of the plate without and with PDs under forced vibration are predicted, and the predictions agree well with the experimental results. Results demonstrate that the added PDs have a significant effect on vibration damping and noise reduction for the primary structure. The presented work in this paper shows that the theoretical work is valid, which can provide important theoretical guidance for low-noise optimization design of particle damping structure. This model also has an important reference value for the noise control of this kind of structure.

      • KCI등재

        AITC induces MRP1 expression by protecting against CS/CSE-mediated DJ-1 protein degradation via activation of the DJ-1/Nrf2 axis

        Lingling Xu,Jie Wu,Nini Li,Chengjun Jiang,Yan Guo,Peng Cao,Dianlei Wang 대한생리학회-대한약리학회 2020 The Korean Journal of Physiology & Pharmacology Vol.24 No.6

        The present study aimed to examine the effect of allyl isothiocyanate (AITC) on chronic obstructive pulmonary disease and to investigate whether upregulation of multidrug resistance-associated protein 1 (MRP1) associated with the activation of the PARK7 (DJ-1)/nuclear factor erythroid 2-related factor 2 (Nrf2) axis. Lung function indexes and histopathological changes in mice were assessed by lung function detection and H&E staining. The expression levels of Nrf2, MRP1, heme oxygenase-1 (HO-1), and DJ-1 were determined by immunohistochemistry, Western blotting and reverse transcription-quantitative polymerase chain reaction. Next, the expression of DJ-1 in human bronchial epithelial (16HBE) cells was silenced by siRNA, and the effect of DJ-1 expression level on cigarette smoke extract (CSE)-stimulated protein degradation and AITC-induced protein expression was examined. The expression of DJ-1, Nrf2, HO-1, and MRP1 was significantly decreased in the wild type model group, while the expression of each protein was significantly increased after administration of AITC. Silencing the expression of DJ-1 in 16HBE cells accelerated CSE-induced protein degradation, and significantly attenuated the AITC-induced mRNA and protein expression of Nrf2 and MRP1. The present study describes a novel mechanism by which AITC induces MRP1 expression by protecting against CS/CSEmediated DJ-1 protein degradation via activation of the DJ-1/Nrf2 axis.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼